Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp tính thể tích khối đa diện

Tài liệu gồm 34 trang hướng dẫn các phương pháp tính thể tích khối đa diện và các bài tập vận dụng. §1.ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG ĐL1:Nếu đường thẳng d không nằm trên mp (P) và song song với đường thẳng a nằm trên mp (P) thì đường thẳng d song song với mp(P) ĐL2: Nếu đường thẳng a song song với mp (P) thì mọi mp (Q) chứa a mà cắt mp (P) thì cắt theo giao tuyến song song với a ĐL3: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó §2.HAI MẶT PHẲNG SONG SONG ĐL1: Nếu mp (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau ĐL2: Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia ĐL3: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song [ads] §1.ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG ĐL1: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp (P) thì đường thẳng d vuông góc với mp (P) ĐL2: (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp (P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P) §2.HAI MẶT PHẲNG VUÔNG GÓC ĐL1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau ĐL2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q) ĐL3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P) ĐL4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba

Nguồn: toanmath.com

Đọc Sách

Khai thác công thức tính khoảng cách từ chân đường vuông góc của hình chóp đến mặt bên
Tài liệu gồm 14 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên Toán trường THPT Chu Văn An, tỉnh Thanh Hóa), hướng dẫn khai thác công thức tính khoảng cách từ chân đường vuông góc của hình chóp đến mặt bên để giải các bài toán liên quan đến tính khoảng cách trong hình học không gian. Trích dẫn tài liệu khai thác công thức tính khoảng cách từ chân đường vuông góc của hình chóp đến mặt bên: + Sử dụng công thức khoảng cách phía trên giúp chúng ta không phải suy nghĩ dựng hình chiếu của điểm lên mặt phẳng. Khi gặp một bài toán tính khoảng cách mà xuất hiện chân đường vuông góc thì ta sẽ xử lí để đưa về bài toán tính khoảng cách từ chân đường vuông góc đó tới mặt phẳng cần tính. + Trong bài toán chưa có chân đường vuông góc, nên ta cần tìm và chứng minh được rằng chân đường vuông góc đó chính là trọng tâm H của tam giác đáy. Chân đường vuông góc trong bài toán là điểm H, nên ta cần sử dụng tỉ lệ về khoảng cách để chuyển khoảng cách từ B đến (SAC) thành khoảng cách từ H đến (SAC). + Nhận thấy điểm A cùng với A’, B, C tạo thành 1 hình chóp có A là chân đường vuông góc nên ta cần sử dụng tỉ lệ về khoảng cách để chuyển khoảng cách từ M đến (A’BC) thành khoảng cách từ A đến (A’BC).
Nắm trọn chuyên đề khối đa diện và khối tròn xoay
Cuốn sách gồm 448 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề khối đa diện và khối tròn xoay, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề khối đa diện và khối tròn xoay: CHUYÊN ĐỀ . KHỐI ĐA DIỆN – HÌNH HỌC KHÔNG GIAN. CHỦ ĐỀ . THỂ TÍCH KHỐI ĐA DIỆN. Dạng 1. Mở đầu về khối đa diện. Dạng 2. Thể tích khối lăng trụ. Dạng 3. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 4. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 5. Thể tích khối chóp đều. Dạng 6. Thể tích khối tứ diện đặc biệt. Dạng 7. Tỉ số thể tích. Dạng 8. Các bài toán thể tích chọn lọc. Dạng 9. Bài toán về góc – khoảng cách. Dạng 10. Cực trị khối đa diện. CHUYÊN ĐỀ . KHỐI TRÒN XOAY – NÓN – TRỤ – CẦU. CHỦ ĐỀ . KHỐI NÓN – KHỐI TRỤ. Dạng 1. Tìm các yếu tố liên quan đến khối nón, khối trụ. Dạng 2. Khối tròn xoay nội, ngoại tiếp khối đa diện. Dạng 3. Cực trị và toán thực tế về khối tròn xoay. CHỦ ĐỀ . KHỐI CẦU. Dạng 1. Khối cầu ngoại tiếp tứ diện.
Tổng ôn tập TN THPT 2021 môn Toán Góc và khoảng cách
Tài liệu gồm 64 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề góc và khoảng cách, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Hình học 12 chương 1, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Góc và khoảng cách: 1. Mức độ nhận biết: 05 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 03). 2. Mức độ thông hiểu: 30 câu. + Câu hỏi và bài tập (Trang 06). + Đáp án và lời giải chi tiết (Trang 11). 3. Mức độ vận dụng thấp: 41 câu. + Câu hỏi và bài tập (Trang 28). + Đáp án và lời giải chi tiết (Trang 35).
Tổng ôn tập TN THPT 2021 môn Toán Khối đa diện và thể tích của chúng
Tài liệu gồm 100 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích của chúng, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Hình học 12 chương 1, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Khối đa diện và thể tích của chúng: 1. Mức độ nhận biết: 57 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 06). 2. Mức độ thông hiểu: 34 câu. + Câu hỏi và bài tập (Trang 18). + Đáp án và lời giải chi tiết (Trang 22). 3. Mức độ vận dụng thấp: 39 câu. + Câu hỏi và bài tập (Trang 37). + Đáp án và lời giải chi tiết (Trang 43). 4. Mức độ vận dụng cao: 29 câu. + Câu hỏi và bài tập (Trang 68). + Đáp án và lời giải chi tiết (Trang 74).