Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán THCS năm 2022 2023 phòng GD ĐT Buôn Ma Thuột Đắk Lắk

Nội dung Đề thi HSG Toán THCS năm 2022 2023 phòng GD ĐT Buôn Ma Thuột Đắk Lắk Bản PDF - Nội dung bài viết Đề thi HSG Toán THCS năm 2022 - 2023 phòng GD&ĐT Buôn Ma Thuột - Đắk Lắk Đề thi HSG Toán THCS năm 2022 - 2023 phòng GD&ĐT Buôn Ma Thuột - Đắk Lắk Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán bậc THCS năm học 2022-2023 của phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk. Kỳ thi sẽ diễn ra vào ngày 02 tháng 03 năm 2023. Trích đề thi: + Đề 1: Biển Chết là hồ nước mặn nhất trên Trái Đất với độ mặn cao gấp 9,6 lần so với nước biển thường. Thầy Phương lấy 500g nước biển Chết, 400g nước biển thường và thêm 10 lít nước ngọt vào thùng. Hỏi nước trong thùng có thể là nước lợ hay không? + Đề 2: Gen B có 3600 liên kết Hiđro và số Nucleotit loại T lớn hơn số Nucleotit không bổ sung là 300 Nucleotit. Tính số Nucleotit từng loại của gen B. + Đề 3: Cho hình vuông ABCD có cạnh a. N là điểm thuộc cạnh AB, E là giao điểm của CN và DA, F là giao điểm của tia Cx và AB, M là trung điểm của EF. Hãy chứng minh điều kiện và tính toán vị trí của N trên AB thỏa mãn điều kiện diện tích tứ giác ACFE gấp 3 lần diện tích hình vuông ABCD. Đề thi năm nay hứa hẹn mang đến những thách thức và giải pháp thú vị cho các em học sinh, giúp họ rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 - 2013 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 – 2013 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 10/03/2013.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 - 2012 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 – 2012 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 11/03/2012, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đô Lương Nghệ An
Nội dung Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đô Lương Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Đô Lương Nghệ An Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Đô Lương Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Đô Lương, tỉnh Nghệ An. Đề thi bao gồm các câu hỏi sau: Câu 1: Cho T = 4n + 1 với n là số tự nhiên lẻ lớn hơn 1. Chứng minh giá trị của T là hợp số. Câu 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi N là trung điểm của BC. Từ N vẽ đường thẳng song song với AB cắt AC tại E. Từ C vẽ đường thẳng song song với AH cắt đường thẳng NE tại K. BK cắt AH tại M. a) Chứng minh BC2 = 4.NE.NK và M là trung điểm của đoạn thẳng AH b) Các đường phân giác của tam giác AHE cắt nhau tại I, các đường phân giác của tam giác CHE cắt nhau tại Q. Đường thẳng IQ cắt các đường thẳng AH và CH thứ tự tại P và F. Chứng minh AH.HC = 2.HP.HF. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng trong môn Toán. Chúc các em thành công!
Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa
Nội dung Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Chào đón quý thầy cô và các em học sinh lớp 9, đây là bộ đề thi Olympic dành cho các trường THCS nhằm chuẩn bị cho kỳ thi học sinh giỏi môn Toán lớp 9 năm học 2023-2024 tại trường THPT chuyên Lam Sơn, Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 05 tháng 11 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trong đề thi này, chúng ta sẽ gặp các bài toán đa dạng và thú vị như: Phương trình nghiệm nguyên ax by c với điều kiện số nguyên dương A. Cách chứng minh số nghiệm nguyên thỏa mãn điều kiện đã cho. Chứng minh đồng dạng của các tam giác trong hình học cơ bản thông qua giao điểm ba đường phân giác của tam giác. Chứng minh tính chất về đường tròn nội tiếp tam giác và đường thẳng đi qua tâm của đường tròn. Hy vọng rằng bộ đề thi này sẽ giúp các em ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt được kết quả cao trong kỳ thi sắp tới. Chúc các em học tốt và thành công!