Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phát triển VD - VDC đề tham khảo thi TN THPT 2023 môn Toán

Tài liệu gồm 529 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập các chuyên đề phát triển bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán : + Có bao nhiêu giá trị nguyên của tham số m để hàm số 4 2 y x x mx 6 có ba điểm cực trị? Lời giải: Chọn B. Ta có: 3 y x x m 4 12. Xét phương trình 3 y x x m 0 4 12 0 1. Để hàm số có ba điểm cực trị thì phương trình 1 phải có 3 nghiệm phân biệt. Ta có: 3 1 4 12 m x x. Xét hàm số 3 g x x x 4 12 có 2 g x x 12 12. Cho 2 g x x 12 12 0 1. Bảng biến thiên của g x. Dựa vào bảng biến thiên ta thấy, phương trình 1 có 3 nghiệm phân biệt khi 8 8 m. Do m 6 5. Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy I J K là hình chiếu của S lên AC CB BA. Dễ dàng chứng minh được góc giữa các mặt bên và đáy là các góc SIH SJH SKH và các tam giác vuông SHI SHJ SHK bằng nhau nên HI HJ HK. Do đó H là tâm đường tròn nội tiếp của tam giác ABC. Ta có: 0 AC AB a BC tan 60 3 2a. Nên diện tích và nửa chu vi của tam giác ABC lần lượt là: 2 2 a a AB AC BC S AB. Suy ra bán kính đường tròn nội tiếp của tam giác ABC là: 2 a S r HK p. Đường cao của khối chóp SABC là 3 3 tan 60 2 a SH HK. Vậy thể tích khối chóp đã cho là? + Cho hàm số 1 3 2 2 4 3 y f x x x mx. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 2023 2023 để hàm số y f x 4 nghịch biến trên khoảng 03? Lời giải: Ta có: y f x f x. Đặt t x 4 với x t x 1. Do đó, hàm số y f x 4 nghịch biến trên khoảng 03 khi và chỉ khi hàm số y f t nghịch biến trên khoảng 4 1. Mặt khác y f t là hàm số chẵn, có đồ thị đối xứng qua trục tung. Suy ra hàm số y f t nghịch biến trên khoảng 4 1 khi hàm số y f t đồng biến trên 14 tương ứng với hàm số y f t đồng biến trên 14. Do m và m 2023 2023 nên có 2023 giá trị nguyên của m thỏa mãn bài toán.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp 14 chuyên đề luyện thi THPT - Trung tâm LTĐH Diệu Hiền
Tổng hợp 14 chuyên đề luyện thi THPT – Trung tâm LTĐH Diệu Hiền
11 tập Kính Lúp Table giải toán bằng máy tính Casio - Đoàn Trí Dũng
Bộ sách Kính Lúp Table được biên soạn bởi nhóm tác giả – do thầy Đoàn Trí Dũng chủ biên gồm 11 cuốn, sách trình bày các kỹ năng sử dụng máy tính Casio hỗ trợ giải các dạng toán phương trình vô tỷ. Tập 1: Đánh giá hàm đơn điệu Tập 2: Chia đa thức nhiều căn Tập 3: Ép tích bằng ẩn phụ Tập 4: Nhân liên hợp giải phương trình vô tỷ Tập 5: Ưng chảo thủ [ads] Tập 6: Casio cho người mới bắt đầu Tập 7: Phương pháp nghiệm bội kép trong chứng minh bất đẳng thức Tập 8: Phương pháp xử lý nghiệm vô tỷ phương trình bậc 3 Tập 9: Tuyển tập các phương pháp hay trong giải toán Trung học phổ thông quốc gia Tập 10: Kỹ thuật gán độ dài Tập 11: Cô lập căn thức
17 chuyên đề luyện thi THPT Quốc gia - Huỳnh Chí Hào
17 chuyên đề luyện thi THPT Quốc gia – Huỳnh Chí Hào
Tuyển tập công thức Toán luyện thi THPT Quốc gia
BỘ CÔNG THỨC TOÁN LỚP 12 ÔN THI THPT QUỐC GIA TỪ A–Z Phần I. ĐẠI SỐ 1. Tam thức bậc 2 2. Bất đẳng thức Cauchy 3. Cấp số cộng 4. Cấp số nhân 5. Phương trình, bất phương trình chứa giá trị tuyệt đối 6. Phương trình, bất phương trình chứa căn 7. Phương trình, bất phương trình logarit 8. Phương trình, bất phương trình mũ 9. Lũy thừa 10. Logarit Phần II. LƯỢNG GIÁC Bao gồm 3 chuyên đề lớn 1. Công thức lượng giác 2. Phương trình lượng giác 3. Hệ thức lượng trong tam giác Phần III. ĐẠO HÀM – TÍCH PHÂN – HÌNH HỌC – NHỊ THỨC NEW TON 1. Đạo hàm 2. Bảng các nguyên hàm 3. Diện tích hình phẳng – Thể tích vật thể tròn xoay 4. Phương pháp tọa độ trong mặt phẳng 5. Phương pháp tọa độ trong không gian 6. Nhị thức Newton