Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền - Hải Phòng lần 1

Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 mã đề 134 gồm 05 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 28 tháng 12 năm 2018 nhằm trang bị từ sớm cho các em học sinh khối 11 những kiến thức về kỳ thi THPT Quốc gia môn Toán để các em làm quen, nắm bắt, xác định hướng học tập phù hợp … đề thi có đáp án các mã đề 134, 245, 356, 467, 578, 689, 790, 801. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 : + Trong các khẳng định sau , khẳng định nào đúng ? A. Phép thử ngẫu nhiên là phép thử mà ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể có của phép thử đó. B. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, mặc dù không biết tập hợp tất cả các kết quả có thể có của phép thử đó. C. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, khi biết tập hợp tất cả các kết quả có thể có của phép thử đó. D. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AC, N là điểm thuộc cạnh AD sao cho AN = 2ND. O là một điểm thuộc miền trong của tam giác BCD. Khẳng định nào sau đây đúng? A. Mặt phẳng (OMN) chứa đường thẳng CD. B. Mặt phẳng (OMN) đi qua điểm A. C. Mặt phẳng (OMN) chứa đường thẳng AB. D. Mặt phẳng (OMN) đi qua giao điểm của hai đường thẳng MN và CD. + Trong kỳ thi THPT Quốc Gia môn Toán năm 2019, mỗi phòng thi gồm 24 thí sinh được sắp xếp vào 24 vị trí khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí.

Nguồn: toanmath.com

Đọc Sách

Đề thi chuyên đề tháng 10 năm học 2017 - 2018 môn Toán 11 trường Nguyễn Thái Học - Vĩnh Phúc
Đề thi chuyên đề tháng 10 năm học 2017 – 2018 môn Toán 11 trường Nguyễn Thái Học – Vĩnh Phúc gồm 8 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi : + Tìm khẳng định sai: Phép đồng dạng tỉ số k A. Biến đường tròn bán kính R thành đường tròn bán kính kR B. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy C. Biến đường thẳng thành đường thẳng thì hai đường thẳng đó song song hoặc trùng nhau D. Biến tam giác thành tam giác đồng dạng với nó [ads] + Chọn phát biểu sai trong các phát biểu sau: A. Đồ thị của hàm số y = sin2x nhận điểm O làm tâm đối xứng B. Đồ thị của hàm số y = cosx nhận trục Oy làm trục đối xứng C. Đồ thị của hàm số y = tan3x nhận điểm O làm tm đối xứng D. Đồ thị của hàm số y = cotx nhận trục Oy làm trục đối xứng + Cho điểm M trong mặt phẳng. Tìm khẳng định sai A. vtMM’ = vta thì phép đặt tương ứng điểm M với điểm M’ là phép biến hình B. Nếu a > 0, MM’ = a thì phép đặt tương ứng điểm M với điểm M’ là phép biến hình C. M’ là hình chiếu vuông góc của M trên đường thẳng d, phép đặt tương ứng điểm M với điểm M’ là phép biến hình D. M’ đối xứng M qua điểm I thi phép đặt tương ứng điểm M với điểm M’ là phép biến hình
Đề khảo sát môn Toán 11 năm học 2017 - 2018 trường THPT Quế Võ 2 - Bắc Ninh
Đề khảo sát môn Toán 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề thi KSCL Toán 11 lần 1 năm học 2017 - 2018 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 - 2018 trường THPT Hàn Thuyên - Bắc Ninh
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .