Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi gồm 05 trang, hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 111. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Bác Ba có một mảnh đất rộng 6 ha. Bác dự tính trồng cà chua và ngô cho mùa vụ sắp tới. Nếu trồng ngô thì bác Ba cần 10 ngày để trồng một ha. Nếu trồng cà chua thì bác Ba cần 20 ngày để trồng một ha. Biết rằng mỗi ha ngô sau thu hoạch bán được 30 triệu đồng, mỗi ha cà chua sau thu hoạch bán được 50 triệu đồng và bác Ba chỉ còn 100 ngày để canh tác cho kịp mùa vụ. Số tiền nhiều nhất mà bác Ba có thể thu được sau mùa vụ này là? + Một phòng đọc sách của thư viện trường THPT B có diện tích mặt sàn là 2 80m. Nhà trường dự kiến kê một số bàn ghế, biết rằng diện tích để kê một chiếc ghế là 2 0,5m một chiếc bàn là 2 1,0m. Gọi x là số ghế, y là số bàn được kê. Biết diện tích mặt sàn dành cho lối lưu thông tối thiểu là 2 20m. Khi đó bất phương trình bậc nhất hai ẩn x y cho phần mặt sàn để kê bàn và ghế sẽ là? + Trong kỳ thi Tốt nghiệp trung học phổ thông năm 2023, ở trường THPT A kết quả số thí sinh đạt danh hiệu xuất sắc như sau: môn Toán có 48 thí sinh; môn Vật lý có 37 thí sinh; môn Văn có 42 thí sinh; môn Toán hoặc môn Vật lý có 75 thí sinh; môn Toán hoặc môn Văn có 76 thí sinh; môn Vật lý hoặc môn Văn có 66 thí sinh; xuất sắc cả 3 môn Toán, Vật lý, Văn có 4 thí sinh. Số thí sinh đạt danh hiệu xuất sắc chỉ một môn là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề Olympic Toán 10 năm 2019 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội
giới thiệu đến bạn đọc đề thi Olympic Toán 10 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài. Trích dẫn đề Olympic Toán 10 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Cho tam giác ABC có BC = a, CA = b, AB = c, độ dài ba đường cao kẻ từ đỉnh A, B, C lần lượt là ha, hb, hc. Biết rằng asinA + bsinB + csinC = ha + hb + hc, chứng minh tam giác ABC đều. [ads] + Cho hai tia Ax, By với AB = 100 (cm), góc xAB = 45° và By ⊥ AB. Chất điểm X chuyển động trên tia Ax bắt đầu từ A với vận tốc 3√2 (cm/s), cùng lúc đó chất điểm Y chuyển động trên tia By bắt đầu từ B với vận tốc 4 (cm/s). Sau t (giây) chất điểm X di chuyển đuợc đoạn đường AM, chất điểm Y di chuyển được đoạn đường BN. Tìm giá trị nhỏ nhất của đoạn MN. + Cho phương trình x^4 – 2(m + 2)x^2 + 2m + 3 = 0 (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt x1, x2, x3, x4 thỏa mãn x1^2 + x2^2 + x3^2 + x4^2 + = 52.
Đề học sinh giỏi Toán 10 cấp trường năm 2018 - 2019 trường Lưu Hoàng - Hà Nội
Đề học sinh giỏi Toán 10 cấp trường năm học 2018 – 2019 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 cấp trường năm 2018 – 2019 trường Lưu Hoàng – Hà Nội : + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón các loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Cho tam giác ABC có độ dài các cạnh là a, b, c. Tìm b, c biết mb = 4, mc = 2 và a = 3 (trong đó mb, mc là độ dài các đường trung tuyến qua đỉnh B, C của tam giác). + Trong mặt phẳng tọa độ Oxy. Cho tam giác ABC, biết A(5; 4), B(3; -2), C(1; -5). Tìm tọa độ điểm M trên trục hoành sao cho |MA + MB + MC| đạt giá trị nhỏ nhất.
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín - Hà Nội
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 10 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y – 19 = 0, điểm I(42/13;41/13). a) Viết phương trình tham số đường thẳng AH. Tìm tọa độ điểm H? b) Viết phương trình tổng quát cạnh AD. [ads] + Cho tam giác ABC, đặt a = BC, b = AC, c = AB. Gọi M là điểm tùy ý. a) Tìm giá trị nhỏ nhất của biểu thức P = MA^2 + MB^2 + MC^2 theo a, b, c. b) Giả sử a = √6 cm, b = 2 cm, c = (1 + √3) cm. Tính số đo góc nhỏ nhất của tam giác ABC và diện tích tam giác ABC. + Cho hàm số y = x^2 – 2x + 2. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm m để phương trình -x^2 + 2x – 2 – m = 0 có hai nghiệm x1 và x2 thỏa mãn: x1 < -1 < 3 < x2.
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 - 2018 trường THPT Thanh Miện - Hải Dương
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 – 2018 trường THPT Thanh Miện – Hải Dương gồm 5 bài toán tự luận,thời gian làm bài 180 phút, đề thi HSG có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD, điểm M (-2; 0) là trung điểm của cạnh AB, điểm H(1; -1) là hình chiếu của B trên AD và điểm G(7/3; 3) là trọng tâm tam giác BCD. Đường thẳng HM cắt BC tại E, đường thẳng HG cắt BC tại F. Tìm tọa độ các điểm E, F và B. [ads] + Cho tam giác ABC có trọng tâm là G. Hai điểm D và E được xác định bởi các hệ thức vectơ vtAD = 2.vtAB; vtAE = 2/5.vtAC. Chứng minh rằng: D, E, G thẳng hàng. + Gọi H là trực tâm tam giác ABC, M là trung điểm của BC. Chứng minh rằng vtMH.vtMA = 1/4.BC^2.