Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức

Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo
Nội dung Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Được biên soạn bởi tác giả Nguyễn Quốc Bảo, tài liệu này gồm 327 trang, giúp hướng dẫn các phương pháp chứng minh bất đẳng thức. Bất đẳng thức là dạng toán khó thường xuất hiện trong các đề thi chọn học sinh giỏi Toán lớp 8/ Toán lớp 9, đề tuyển sinh lớp 10 môn Toán. Phần I của tài liệu bao gồm các phương pháp chứng minh bất đẳng thức như sau: Chủ đề 1: Phương pháp dùng định nghĩa trong chứng minh bất đẳng thức. Chủ đề 2: Phương pháp biến đổi tương đương trong chứng minh bất đẳng thức. Chủ đề 3: Phương pháp phản chứng trong chứng minh bất đẳng thức. Chủ đề 4: Phương pháp tam thức bậc hai trong chứng minh bất đẳng thức. Và các chủ đề khác như sử dụng tính chất tỷ số, làm trội, làm giảm, quy nạp toán học, dãy số, AM-GM (Cauchy), Bunyakovsky, có biến trên một đoạn, kĩ thuật đồng bậc hóa, chuẩn hóa, sử dụng đẳng thức, nguyên lý Dirichlet, sắp xếp biến, hàm số bậc nhất, dồn biến, hình học, đổi biến, cực trị, hệ số bất định. Phần II của tài liệu tập trung vào tuyển chọn các bài toán bất đẳng thức hay thường xuất hiện trong các kì thi chọn học sinh giỏi Toán. Bí quyết chứng minh bất đẳng thức của Nguyễn Quốc Bảo là nguồn tư liệu hữu ích giúp học sinh nắm vững và áp dụng thành thục các phương pháp chứng minh bất đẳng thức trong quá trình học tập của mình.
Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo
Nội dung Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc BảoChủ đề I. Chứng minh đẳng thứcChủ đề II. Tính giá trị biểu thức một biếnChủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc Bảo Tài liệu này được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, với mục đích hướng dẫn học sinh cách giải các dạng toán chuyên đề chứng minh đẳng thức và tính giá trị biểu thức. Tài liệu gồm 94 trang, phù hợp cho học sinh lớp 8, lớp 9 và cả những ai muốn ôn thi vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm các chủ đề sau: Chủ đề I. Chứng minh đẳng thức Dạng 1: Sử dụng phép biến đổi thương đương Dạng 2: Sử dụng hằng đẳng thức quen biết Dạng 3: Sử dụng phương pháp đổi biến Dạng 4: Sử dụng bất đẳng thức Dạng 5: Sử dụng lượng liên hợp ... (và các dạng khác) Chủ đề II. Tính giá trị biểu thức một biến Dạng 1: Tính giá trị biểu thức chứa đa thức Dạng 2: Tính giá trị biểu thức chứa căn thức Dạng 3: Tính giá trị biểu thức có biến là nghiệm của phương trình ... (và các dạng khác) Chủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Dạng 1: Sử dụng phương pháp phân tích Dạng 2: Sử dụng phương pháp hệ số bất định Dạng 3: Sử dụng phương pháp hình học ... (và các dạng khác) Mỗi chủ đề trong tài liệu đều được chia thành ba phần: Kiến thức cần nhớ: Tóm tắt những kiến thức cơ bản và bổ sung để giải các bài tập thuộc các dạng toán Một số ví dụ: Cung cấp ví dụ minh họa để học sinh hiểu rõ về kỹ năng và phương pháp giải Bài tập vận dụng: Hệ thống bài tập phân loại theo độ khó, bao gồm cả các bài tập từ đề thi học sinh giỏi và đề thi vào lớp 10 chuyên Toán Tài liệu này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải toán, và chuẩn bị tốt cho kỳ thi sắp tới. Cùng với sự hướng dẫn cụ thể và ví dụ minh họa, việc ôn tập sẽ trở nên dễ dàng và hiệu quả hơn.
Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung
Nội dung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Bản PDF - Nội dung bài viết Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Tài liệu mang tựa đề "Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức" được biên soạn bởi thầy giáo Nguyễn Tài Chung. Tài liệu này hướng dẫn cách sử dụng nguyên lí Dirichle để chứng minh bất đẳng thức, đồng thời phù hợp cho việc bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nội dung bắt đầu bằng việc đưa ra một ví dụ hay về Nguyên lý Dirichle: Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Nguyên lý Dirichle đơn giản nhưng lại có tính hiển nhiên và logic. Tiếp theo, tài liệu mô tả cách áp dụng nguyên lí Dirichle vào việc chứng minh bất đẳng thức thông qua các ví dụ cụ thể. Ví dụ về việc chọn "điểm rơi" để giả sử để chứng minh bất đẳng thức, và cách xử lý khi đã chọn được điểm đó. B. BÀI TẬP Phần này tập trung vào việc thực hành các bài tập liên quan đến sử dụng nguyên lí Dirichle chứng minh bất đẳng thức. Học sinh sẽ được yêu cầu tự giải các bài tập, từ đó củng cố kiến thức và kỹ năng của mình trong việc áp dụng nguyên lí này. Đây là một tài liệu hữu ích và có thể giúp học sinh hiểu rõ hơn về nguyên lí Dirichle và cách áp dụng nó vào việc chứng minh bất đẳng thức. Việc thực hành các bài tập cũng giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic trong Toán.
5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng
Nội dung 5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng Bản PDF - Nội dung bài viết Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu được soạn bởi thầy giáo Lê Văn Hưng, tập hợp 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, bao gồm 182 trang đầy đủ kiến thức cần thiết từ lý thuyết đến các dạng bài tập thực hành. Trước mỗi chủ đề, tài liệu tổng hợp và tóm tắt những khái niệm quan trọng mà học sinh cần hiểu rõ, cung cấp hướng dẫn cụ thể cho việc giải các dạng bài tập phổ biến. Bên cạnh đó, tài liệu cũng chọn lọc và biên soạn các bài tập tự luyện từ các đề thi tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội. Đây thực sự là nguồn tài liệu hữu ích và chuẩn bị tốt cho học sinh chuẩn bị bước vào kỳ thi tuyển sinh quan trọng. Nhờ tài liệu của thầy Lê Văn Hưng, học sinh có thể tự tin hơn trong việc ôn luyện và đạt kết quả cao trong kỳ thi sắp tới.