Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức

Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tiếp tuyến, cát tuyến ôn thi vào lớp 10
Tài liệu gồm 11 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề tiếp tuyến, cát tuyến, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. NHỮNG TÍNH CHẤT CẦN NHỚ 1. Nếu hai đường thẳng chứa các dây AB CD KCD của một đường tròn cắt nhau tại M thì MA.MB = MC.MD. 2. Đảo lại nếu hai đường thẳng AB CD cắt nhau tại M và MA.MB = MC.MD thì bốn điểm A B C D thuộc một đường tròn. 3. Nếu MC là tiếp tuyến và MAB là cát tuyến thì MC MA MB MO R 2 2 2. 4. Từ điểm K nằm ngoài đường tròn ta kẻ các tiếp tuyến KA KB cát tuyến KCD H là trung điểm CD thì năm điểm K A H O B nằm trên một đường tròn. 5. Từ điểm K nằm ngoài đường tròn ta kẻ các tiếp tuyến KA KB cát tuyến KCD thì AC BC AD BD. Ta có: AC KC KAC ADK KAC KAD AD KA. Tương tự ta cũng có: BC KC BD KB mà KA KB nên suy ra AC BC AD BD. Chú ý: Những tứ giác quen thuộc ACBD như trên thì ta luôn có: AC BC AD BD và CA DA CB DB. NHỮNG BÀI TOÁN TIÊU BIỂU
Chuyên đề tứ giác nội tiếp ôn thi vào lớp 10
Tài liệu gồm 18 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề tứ giác nội tiếp, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. MỘT SỐ TIÊU CHUẨN NHẬN BIẾT TỨ GIÁC NỘI TIẾP Tiêu chuẩn 1. Điều kiện cần và đủ để bốn đỉnh của một tứ giác lồi nằm trên cùng một đường tròn là tổng số đo của hai góc tứ giác tại hai đỉnh đối diện bằng 0 180. Điều kiện để tứ giác lồi ABCD nội tiếp là: 0 A C 180 hoặc 0 B D 180. Hệ quả: Tứ giác ABCD nội tiếp được BAD DCx. Tiêu chuẩn 2. Tứ giác ABCD nội tiếp ADB ACB. Tiêu chuẩn 3. Cho hai đường thẳng 1 2 cắt nhau tại điểm M. Trên hai đường thẳng 1 2 lần lượt lấy các điểm A B và C D khi đó 4 điểm A B C D cùng thuộc một đường tròn khi và chỉ khi MA.MB = MC.MD. VÍ DỤ MINH HỌA BÀI TẬP RÈN LUYỆN
Chuyên đề góc với đường tròn ôn thi vào lớp 10
Tài liệu gồm 22 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề góc với đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. KIẾN THỨC CƠ BẢN Góc ABE có đỉnh A nằm trên đường tròn O và các cạnh cắt đường tròn đó được gọi là góc nội tiếp. Trong trường hợp các góc nội tiếp có số đo không vượt quá 90 thì số đo của chúng bằng nửa số đo của góc ở tâm, cùng chắn một cung. Các góc nội tiếp đều có số đo bằng nửa số đo cung bị chắn. Vì thế, nếu những góc này cùng chắn một cung (hoặc chắn những cung bằng nhau) thì chúng bằng nhau, nếu các góc nội tiếp này bằng nhau thì các cung bị chắn bằng nhau. Cho đường tròn O và dây cung AB. Từ điểm A ta kẻ tiếp tuyến Ax với đường tròn, khi đó BAx được gọi là góc tạo bởi tia tiếp tuyến với dây cung AB. Cũng như góc nội tiếp, số đo góc giữa tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn. Chú ý: Việc nắm chắc các khái niệm, định lý, hệ quả về góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cung có thể giúp chúng ta so sánh số đo các góc, từ đó chứng minh được các đường thẳng song song với nhau, các tam giác bằng nhau, các tam giác đồng dạng với nhau. GÓC NỘI TIẾP ĐƯỜNG TRÒN Hai góc cùng chắn một cung thì bằng nhau và bằng nửa số đo cung bị chắn. Các góc chắn hai cung bằng nhau thì bằng nhau. GÓC TẠO BỞI TIA TIẾP TUYẾN VÀ DÂY CUNG Số đo góc tạo bởi tia tiếp tuyến và dây cung (tại một điểm trên đường tròn) bằng nửa số đo cung bị chắn. GÓC CÓ ĐỈNH Ở TRONG HOẶC NGOÀI ĐƯỜNG TRÒN Với đỉnh A nằm trong đường tròn O ta có góc với đỉnh ở trong đường tròn (hình). Số đo của góc này bằng nửa tổng số đo hai cung bị chắn giữa hai cạnh của góc và các tia đối của hai cạnh đó. Với đỉnh A nằm ở ngoài đường tròn O ta có số đo góc nằm ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. ÁP DỤNG GÓC CÓ ĐỈNH Ở TRONG HOẶC NGOÀI ĐƯỜNG TRÒN Cũng như phần góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cung, các định lý và hệ quả của góc có đỉnh nằm trong hoặc nằm ngoài đường tròn giúp chúng ta tìm mối quan hệ giữa các số đo các góc, chứng minh các đường song song, các tam giác bằng nhau, các tam giác đồng dạng với nhau, hai đường thẳng vuông góc với nhau. ÁP DỤNG GIẢI CÁC BÀI TOÁN VỀ QUỸ TÍCH VÀ DỰNG HÌNH Khái niệm cung chứa góc giúp chúng ta giải được nhiều bài toán quỹ tích, dựng hình, chứng minh nhiều điểm cùng thuộc một đường tròn.
Chuyên đề đường tròn ôn thi vào lớp 10
Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.