Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GDĐT Bắc Ninh

Tháng 9 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2019 – 2020, kỳ thi được diễn ra trong hai ngày liên tiếp 24/09/2019 và 25/09/2019. Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD&ĐT Bắc Ninh gồm tổng cộng 7 bài toán, thời gian làm bài ở mỗi ngày thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD&ĐT Bắc Ninh : + Cho một đa giác đều A1A2 … A20 có 10 đỉnh của đa giác được tô màu xanh, 10 đỉnh còn lại được tô màu đỏ. Ta nối các đỉnh với nhau. a) Gọi a là số các đoạn thẳng nối hai đỉnh màu đỏ liên tiếp, b là số các đoạn thẳng nối hai đỉnh màu xanh liên tiếp. Chứng minh a = b. b) Xét tập hợp S gồm đường chéo A1A4 và tất cả các đường chéo khác của đa giác mà có cùng độ dài với nó. Chứng minh trong tập hợp đó, số đường chéo có hai đầu là màu đỏ bằng với số đường chéo có hai đầu là màu xanh. Gọi k là số đường chéo có hai đầu là màu xanh trong, tìm tất cả các giá trị có thể có của k. [ads] + Cho tam giác nhọn ABC, D là một điểm bất kì trên cạnh BC. Trên cạnh AC, AB lần lượt lấy các điểm E, F sao cho ED = EC, FD = FB. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp các tam giác ABC, BDF, CDE. a) Gọi H là trực tâm của tam giác JDK. Chứng minh rằng tứ giác IJHK nội tiếp. b) Chứng minh rằng khi D chuyển động trên BC, đường tròn ngoại tiếp tam giác IJK luôn đi qua một điểm cố định khác điểm I. + Cho hai dãy số (un), (vn) xác định như sau u0 = a, v0 = b với hằng số thực a, b cho trước thỏa mãn 0 < a < b và un+1 = (un + vn)/2, vn+1 = √un+1.vn với mọi số tự nhiên n. a) Chứng tỏ hai dãy đã cho đều hội tụ và có giới hạn bằng nhau. b) Tìm giới hạn đó theo a, b.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình
Nội dung Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình Bản PDF Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra ngày 21/08/2018, đề thi có lời giải chi tiết. Các dạng toán được đề cập trong đề gồm: Dãy số và giới hạn của dãy số, Bài toán hình học phẳng liên quan đến đường tròn, Bất đẳng thức, Bài toán chia hết.
Đề minh họa kỳ thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ
Nội dung Đề minh họa kỳ thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ Bản PDF Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán lớp 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7
Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT Nguyễn Trãi Thanh Hóa
Nội dung Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT Nguyễn Trãi Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 1 năm học 2023 – 2024 trường THPT Nguyễn Trãi, tỉnh Thanh Hóa; đề thi có đáp án MÃ 101 MÃ 102 MÃ 103 MÃ 104 MÃ 105 MÃ 106 MÃ 107 MÃ 108. Trích dẫn Đề khảo sát Toán lớp 12 lần 1 năm 2023 – 2024 trường THPT Nguyễn Trãi – Thanh Hóa : + Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi 1 S là tổng diện tích của ba quả bóng bàn 2 S là diện tích xung quanh của hình trụ. Tỉ số 1 2 S S bằng? + Một nhóm học sinh dựng lều khi đi dã ngoại bằng cách gấp đôi tấm bạt hình chữ nhật có chiều dài 12 m, chiều rộng 6 m (gấp theo đường trong hình minh hoạ) sau đó dùng hai cái gậy có chiều dài bằng nhau chống theo phương thẳng đứng vào hai mép gấp. Hãy tính xem khi dùng chiếc gậy có chiều dài bằng bao nhiêu thì không gian trong lều là lớn nhất. + Cho hình vuông ABCD có các đỉnh ABC tương ứng nằm trên các đồ thị của các hàm số log 2log 3log aaa y xy xy x. Biết rằng diện tích hình vuông bằng 36, cạnh AB song song với trục hoành. Khi đó a bằng? File WORD (dành cho quý thầy, cô):
Đề khảo sát lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa
Nội dung Đề khảo sát lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng (KSCL) lần 1 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Thiệu Hóa, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án mã đề Mã 121 Mã 122 Mã 123 Mã 124 Mã 125 Mã 126. Trích dẫn Đề khảo sát lần 1 Toán lớp 12 năm 2023 – 2024 trường THPT Thiệu Hóa – Thanh Hóa : + Cho tứ diện OABC có OA OB OC và OA OB OC đôi một vuông góc. Gọi MNP lần lượt là trung điểm của AB BC và CA biết rằng thể tích của khối tứ diện OMNP bằng 9, diện tích của mặt cầu đi qua 4 điểm OABC bằng? + Một chất điểm A xuất phát từ O chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật 1 11 2 180 18 vt m s trong đó t là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 5 giây so với A và có gia tốc bằng 2 am s (a là hằng số). Sau khi B xuất phát được 10 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng? + Cho hai hình vuông ABCD và ABEF cạnh a lần lượt thuộc hai mặt phẳng vuông góc với nhau. Gọi G là điểm sao cho tam giác GEF vuông cân tại G, hai mặt phẳng (ABCD) và (GEF) song song, G và C nằm cùng phía so với mặt phẳng (ABEF). Thể tích của khối đa diện ABCDGEF bằng? File WORD (dành cho quý thầy, cô):