Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Ngô Gia Tự Phú Yên

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Ngô Gia Tự Phú Yên Bản PDF Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, thành phố Tuy Hòa, tỉnh Phú Yên tổ chức kỳ thi kiểm tra chất lượng dạy và học môn Toán lớp 10 giai đoạn cuối học kì 2 (HK2) năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên mã đề 132 gồm có 04 trang với hai phần: phần trắc nghiệm gồm 35 câu, chiếm 07 điểm, phần tự luận gồm 04 câu, chiếm 03 điểm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên : + Trong mặt phẳng Oxy cho elip (E): x^2 + 4y^2 = 1 và các mệnh đề: (I) (E) có độ dài trục lớn bằng 1. (II) (E) có độ dài trục nhỏ bằng 4. (III) (E) có tiêu điểm F1(0;√3/2). (IV) (E) có tiêu cự bằng √3. Số mệnh đề ĐÚNG là? + Trong hệ tọa độ Oxy, cho điểm A(-1;2) và đường thẳng ∆: 4x + 3y + 8 = 0. a) (0,5 điểm) Viết phương trình đường thẳng d đi qua A và vuông góc với ∆. b) (0,5 điểm) Viết phương trình đường tròn (C) tâm là điểm A và tiếp xúc với đường thẳng ∆. [ads] + Cho đường tròn lượng giác gốc A như hình vẽ. Biết góc AOC = pi/6; góc AOD = 5pi/6. Điểm biểu diễn cung có số đo pi/6 + kpi là điểm: A. Điểm B và B’. B. Điểm E và D. C. Điểm D và F. D. Điểm C và E. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường chuyên Lê Hồng Phong TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Cần Thạnh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Cần Thạnh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tìm m để phương trình 2 m x m x m 1 3 1 0 có hai nghiệm phân biệt. + Trong mặt phẳng Oxy, viết phương trình chính tắc của elip (E), biết (E) có độ dài trục lớn bằng 16 và tiêu điểm F1(3;0). + Trong mặt phẳng Oxy, cho hai điểm A, B. Viết phương trình đường tròn có đường kính là AB.
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh. a) Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và d song song với đường thẳng AB . b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn. Viết phương trình tiếp tuyến của đường tròn biết rằng đường thẳng vuông góc với đường thẳng. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của elip E biết E đi qua điểm A và có độ dài trục nhỏ bằng tiêu cự.
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(5;2), C(1;−3). Viết phương trình đường cao AH của tam giác ABC. + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) có đường kính MN với M(−3;2); N(1;−2). + Trong mặt phẳng tọa độ Oxy, cho elip 2 2 1 16 9 x y E. Xác định tọa độ các đỉnh, tiêu điểm; độ dài trục lớn; độ dài trục nhỏ và tiêu cự của Elip.