Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh

Nội dung Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 - 2023 Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 - 2023 Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022 - 2023 tổ chức bởi Sở Giáo dục và Đào tạo tỉnh Hà Tĩnh. Đề thi bao gồm 01 trang với 10 bài toán dạng ghi kết quả và 03 bài toán dạng tự luận, thời gian làm bài 120 phút, có đáp án và lời giải chi tiết do thầy giáo Nguyễn Ngọc Hùng - giáo viên Toán trường THCS Hoàng Xuân Hãn, huyện Đức Thọ, tỉnh Hà Tĩnh thực hiện. Kỳ thi sẽ diễn ra vào thứ Ba ngày 10 tháng 01 năm 2023. Hãy cùng nhau chuẩn bị và cố gắng để thể hiện tài năng của mình trong bài thi sắp tới. Dưới đây là một số câu hỏi mẫu trong đề thi: + Tìm giá trị của tham số m sao cho hình chiếu vuông góc M của góc tọa độ O trên đường thẳng y = (m + 2)x + m - 5 đạt giá trị lớn nhất. + Tính diện tích lớn nhất của hình chữ nhật DEFG nội tiếp tam giác ABC vuông tại A với 4AB = 3AC và BC = 25. + Tính BM, AN theo bán kính R của nửa đường tròn, sau đó chứng minh rằng EF song song với AB và BH OK = OE.AB. Cùng nhau học tập và chinh phục niềm đam mê Toán, chúc các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT TP Cao Lãnh - Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Cao Lãnh, tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 18 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT TP Cao Lãnh – Đồng Tháp : + Nhân dịp ngày siêu khuyến mãi 12.12.2022, một siêu thị trên địa bàn thành phố Cao Lãnh đã khuyến mãi lô hàng tivi có giá niêm yết là 7.400.000 đồng/ cái. Lần đầu siêu thị giảm 10% so với giá niêm yết thì bán được 10 cái tivi, lần sau siêu thị giảm thêm 5% nữa (so với giá giảm lần 1) thì bán thêm được 15 cái nữa. Sau khi bán hết 25 cái tivi thì siêu thị lời được 11.505.000 đồng. Hỏi giá vốn của một cái tivi là bao nhiêu tiền? + Cho a và b là hai số thực phân biệt thỏa mãn 4 4 a a b b 4 4. Chứng minh rằng 0 2 a b. + Cho hình vuông ABCD có tâm O và cạnh bằng 6 cm điểm M nằm trên cạnh BC. a) Khi BM cm 2 hạ OK vuông góc với AM tại K. Tính độ dài đoạn OK. b) Khi điểm M thay đổi trên cạnh BC (M không trùng B và C), điểm N thay đổi trên cạnh CD sao cho 0 MAN E 45 là giao điểm của AN và BD. Chứng minh tam giác AEM vuông cân và đường thẳng MN luôn tiếp xúc với một đường tròn cố định.
Đề học sinh giỏi huyện Toán THCS năm 2022 - 2023 phòng GDĐT Cát Tiên - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cát Tiên, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán THCS năm 2022 – 2023 phòng GD&ĐT Cát Tiên – Lâm Đồng : + Đi xe đạp buổi sáng là một hình thức tập thể dục đơn giản, rất tốt cho sức khỏe và thân thiện với môi trường. Sáng sớm chủ nhật, Nam dự định đạp xe từ nhà ra Sân Vận Động rồi lại đạp xe về. Nhưng khi ra đến Sân Vận Động, Nam dừng lại nghị 3 phút, do đó để về nhà đúng giờ, Nam phải tăng tốc thêm 2km/h. Tính vận tốc dự định của bạn Nam. Biết quãng đường lúc đi và lúc về đều là 3km. + Cho ABC cân tại A có đường cao CI. Gọi D là một điểm bất kỳ thuộc cạnh đáy BC. Gọi DH, DK theo thứ tự là các đường vuông góc kẻ từ D đến AB, AC. Chứng minh rằng CI = DH + DK. + Cho hình chữ nhật ABCD. Vẽ BH vuông góc với AC tại H. Gọi E, F lần lượt là trung điểm của AH và CD. Đường vuông góc với BE tại E cắt AB ở K. Chứng minh rằng ba điểm K, E, F thẳng hàng.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Đạ Tẻh - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đạ Tẻh, tỉnh Lâm Đồng. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Đạ Tẻh – Lâm Đồng : + An và Bình là đôi bạn thân học chung lớp. Vào ngày cuối tuần, An muốn đến nhà Bình chơi nhưng chỉ nhớ tên đường mà không nhớ số nhà nên đã gọi điện thoại hỏi Bình và Bình đã cung cấp thông tin cho An. Biết rằng số nhà của Bình là số tự nhiên gồm hai chữ số và bốn thông tin của Bình cung cấp dưới đây có ba thông tin đúng và một thông tin sai. (1) Số nhà là một số nguyên tố; (2) Số nhà là một số chẵn; (3) Số nhà chia hết cho 7; (4) Số nhà có một số bằng 9. Em hãy giúp bạn An tìm đúng số nhà của bạn Bình. + Một logo được thiết kế bởi ba hình chữ nhật có kích thước bằng nhau (mỗi hình chữ nhật có kích thước là 1 cm x 3 cm). Người ta cắt theo đường nét đứt để chia logo đó thành ba phần A, B và C như hình bên. Tính diện tích hình A (phần tô đậm ở phần A). + Một thửa ruộng hình chữ nhật, nếu giảm chiều rộng đi 1m và tăng chiều dài thêm 2m thì diện tích không đổi; ngoài ra, nếu giảm chiều dài đi 4m đồng thời tăng chiều rộng thêm 3m ta được hình vuông. Tính diện tích thửa ruộng ban đầu.
Đề học sinh giỏi tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề học sinh giỏi tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Tìm tất cả các bộ số nguyên (m; p; q) thỏa mãn: 2m.p2 + 1 = q5 trong đó m > 0; p và q là hai số nguyên tố. + Cho a, b là hai số nguyên thỏa mãn a khác b và ab(a + b) chia hết cho a2 + ab + b2. Chứng minh rằng |a − b| > 3ab. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường tròn tâm I đường kính BC cắt các cạnh AB và AC lần lượt ở M và N. Các tia BN và CM cắt nhau tại H. Gọi K là giao điểm của IH với MN. Qua I kẻ đường thẳng song song với MN cắt các đường thẳng CM và BN lần lượt ở E và Q. 1. Chứng minh ANM đồng dạng với ABC và BQI = ECI. 2. Chứng minh IQ.IE = IC2 và KN/KM = (HN/HM)2 3. Gọi D là giao điểm của AH với BC. Chứng minh rằng. + Cho ba số a, b, c ≥ 1 thỏa mãn 16abc + 4(ab + bc + ca) = 81 + 24(a + b + c). Tìm giá trị nhỏ nhất của biểu thức Q.