Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL thi THPTQG 2020 môn Toán lần 3 trường THPT Yên Lạc 2 - Vĩnh Phúc

Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán do Bộ Giáo dục và Đào tạo tổ chức, ngày … tháng 05 năm 2020, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng ôn thi THPT Quốc gia môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề KSCL thi THPTQG 2020 môn Toán lần 3 trường THPT Yên Lạc 2 – Vĩnh Phúc được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán, đề thi có đáp án. Trích dẫn đề KSCL thi THPTQG 2020 môn Toán lần 3 trường THPT Yên Lạc 2 – Vĩnh Phúc : + Một viên phấn bảng có dạng một khối trụ với bán kính đáy bằng 0,5cm, chiều dài 6cm. Người ta làm một hình hộp chữ nhật bằng carton đựng các viên phấn đó với kích thước 6cm x 5cm x 6cm. Hỏi cần ít nhất bao nhiêu hộp kích thước như trên để xếp 460 viên phấn? + Cho hàm số y = (2x – 1)/(2x – 2) có đồ thị là (C). Gọi M(x0;y0) (với x0 > 1) là điểm thuộc (C), biết tiếp tuyến của (C) tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho S OIB = 8S OIA (trong đó O là gốc tọa độ, I là giao điểm hai tiệm cận). Tính S = x0 – 4y0. [ads] + Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy của hình trụ, AB = 6a, AC = 10a. Tính thể tích khối trụ. + Cho hàm số y = f(x) có đồ thị đạo hàm y = f'(x) (như hình vẽ). Gọi S là tập tất cả các giá trị nguyên của tham số m thuộc khoảng (-5;5) sao cho hàm số y = f(x) – mx + 2020 có đúng một điểm cực trị. Tổng tất cả các phần tử của S bằng? + Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 3) thì được thiết diện là hình chữ nhật có hai cạnh là 3x và √(3x^2 – 2).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng lớp 12 môn Toán năm 2022 2023 trường THPT chuyên Thái Bình
Nội dung Đề kiểm tra chất lượng lớp 12 môn Toán năm 2022 2023 trường THPT chuyên Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng cuối năm môn Toán lớp 12 năm học 2022 – 2023 trường THPT chuyên Thái Bình, tỉnh Thái Bình (mã đề 132); kỳ thi được diễn ra vào Chủ Nhật ngày 07 tháng 05 năm 2023. Trích dẫn Đề kiểm tra chất lượng Toán lớp 12 năm 2022 – 2023 trường THPT chuyên Thái Bình : + Một hộp chứa 25 quả cầu gồm 10 quả màu đỏ được đánh số từ 1 đến 10 và 15 quả màu xanh được đánh số từ 1 đến 15. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tích hai số ghi trên chúng là số chẵn bằng? + Cho khối nón có đỉnh S đáy là hình tròn (O;R), chiều cao bằng 8 và thể tích bằng 800/3. Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB = 12. Gọi C, D lần lượt là các điểm đối xứng với A, B qua O. Khoảng cách giữa hai đường thẳng CD và SA bằng? + Trong không gian Oxyz, cho A(0;0;10), B(3;4;6). Xét các điểm M thay đổi sao cho MB luôn vuông góc OA và tam giác OAM có diện tích bằng 15. Giá trị lớn nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Đề khảo sát chất lượng lớp 12 môn Toán lần 2 năm 2022 2023 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán lần 2 năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2023, sáng thứ Ba ngày 25 tháng 04 năm 2023, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 lần 2 năm học 2022 – 2023. Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2022 – 2023 sở GD&ĐT Thanh Hóa. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 lần 2 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a = 2 cm, đường thẳng SA vuông góc với mặt phẳng đáy (tham khảo hình vẽ). Tính khoảng cách từ trọng tâm G của tam giác SAB đến mặt phẳng (SAC). + Trong không gian Oxyz, cho bốn điểm A(2;1;4), B(2;5;4), C(-5/2;5;-1), D(-3;1;-4). Các điểm M và N thỏa mãn MA2 + 3MB2 = 48 và ND2 = (NC + BC).ND. Tìm độ dài ngắn nhất của đoạn thẳng MN. + Cho hình nón (N) có đỉnh S, chiều cao h = 2. Mặt phẳng (P) qua đỉnh S cắt hình nón (N) theo thiết diện là tam giác đều. Khoảng cách từ tâm đáy hình nón đến mặt phẳng (P) bằng 3. Thể tích khối nón giới hạn bởi hình nón (N) bằng?