Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề góc giữa hai mặt phẳng - Trần Mạnh Tường

Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính góc giữa hai mặt phẳng trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Định nghĩa : Góc giữa hai mặt phẳng là góc giữa hai đường thẳng bất kì, lần lượt vuông góc với hai mặt phẳng đó. 2. Một số phương pháp tính góc giữa hai mặt phẳng : Có 3 phương pháp sau đây hay được sử dụng để tính giá trị góc giữa hai mặt phẳng: Phương pháp 1 : Dùng định nghĩa. Kinh nghiệm: Muốn sử dụng được phương pháp này thì ta phải quan sát, phán đoán xem với đặc điểm đã cho của bài toán thì ta có thể xác định hoặc dựng được 2 đường thẳng lần lượt vuông góc với 2 mặt phẳng mà bài toán yêu cầu tính góc giữa chúng hay không? [ads] Phương pháp 2 : Xác định góc. Ý tưởng của phương pháp này là ta dựng rõ hình hài của góc giữa hai đường thẳng, sau đó dùng các hệ thức lượng để tính giá trị của góc này. Kinh nghiệm: Cách này thường dùng khi 2 mặt phẳng có thể xác định được giao tuyến và có các yếu tố vuông góc. Có 2 loại phương pháp khi sử dụng phương pháp này: + Phương pháp xác định góc loại 1. + Phương pháp xác định góc loại 2. Phương pháp 3 : Dùng khoảng cách. Bình luận: Phương pháp này có ưu điểm là ta không cần xác định rõ hình hài của góc giữa hai mặt phẳng, chỉ cần tính khoảng cách từ điểm đến mặt phẳng và điểm đến đường thẳng, các khoảng cách này lại cũng có thể tính thông qua tỉ số giữa diện tích tam giác với một cạnh hoặc tỉ số giữa thể tích một đa diện với diện tích của 1 mặt. II. VÍ DỤ MINH HỌA Bao gồm 12 câu hỏi và bài toán trắc nghiệm tính góc giữa hai mặt phẳng, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.

Nguồn: toanmath.com

Đọc Sách

Sử dụng phương pháp tỉ số thể tích giải quyết bài toán thể tích khối đa diện - Nguyễn Ngọc Dũng
Tài liệu gồm 23 trang được biên soạn bởi thầy Nguyễn Ngọc Dũng hướng dẫn sử dụng phương pháp tỉ số thể tích giải quyết bài toán thể tích khối đa diện, tài liệu gồm các phần: tổng hợp các kiến thức cần nắm, phân dạng và hướng dẫn phương pháp giải, ví dụ minh họa, bài tập trắc nghiệm có đáp án. I. Tóm tắt lý thuyết 1. Kỹ thuật chuyển đỉnh (đáy không đổi). 2. Kỹ thuật chuyển đáy (đường cao không đổi). 3. Tỉ số diện tích của hai tam giác. 4. Tỉ số thể tích của khối chóp. + Công thức tỉ số thể tích của hình chóp tam giác. + Một trường hợp đặc biệt. 5. Tỉ số thể tích của khối lăng trụ. + Lăng trụ tam giác. + Mặt phẳng cắt các cạnh bên của lăng trụ tam giác. [ads] 6. Khối hộp. + Tỉ số thể tích của khối hộp. + Mặt phẳng cắt các cạnh của hình hộp (chỉ quan tâm tới hai cạnh đối nhau). II. Một số dạng toán Dạng 1: Tỉ số thể tích của khối chóp tam giác. Dạng 2: Tỉ số thể tích của khối chóp tứ giác. Dạng 3: Tỉ số thể tích của khối lăng trụ tam giác. Dạng 4: Tỉ số thể tích của khối hộp.
Đột phá tư duy giải nhanh trắc nghiệm hình học không gian - Lục Trí Tuyên
Tài liệu gồm 117 trang tổng hợp lý thuyết, phân dạng toán và hướng dẫn giải nhanh các bài tập tự luận và trắc nghiệm hình học không gian, tài liệu được biên soạn bởi thầy Lục Trí Tuyên. 1. KHỐI ĐA DIỆN VÀ THỂ TÍCH KHỐI ĐA DIỆN  1.1. Đại cương về khối đa diện 1.1.1. Khối đa diện 1.1.2. Cơ bản về phép biến hình trong không gian 1.1.3. Khối đa diện lồi, đa diện đều 1.1.4. Bài tập áp dụng 1.2. Thể tích khối đa diện 1.2.1. Làm chủ hình vẽ khối chóp và lăng trụ 1.2.2. Tính thể tích khối chóp 1.2.3. Bài tập áp dụng 1.2.4. Thể tích khối lăng trụ 1.2.5. Bài tập áp dụng 1.2.6. Phương pháp tỉ số thể tích 1.2.7. Bài tập áp dụng 1.2.8. Bài toán cực trị và bài toán thực tế 1.2.9. Bài tập áp dụng [ads] 1.3. Khoảng cách và góc 1.3.1. Khoảng cách 1.3.2. Bài tập áp dụng 1.3.3. Góc 1.3.4. Bài tập áp dụng 2. KHỐI TRÒN XOAY 2.1. Khối nón và khối trụ  2.1.1. Định nghĩa và một số thiết diện cơ bản 2.1.2. Thể tích và diện tích 2.1.3. Bài tập áp dụng 2.2. Mặt cầu và khối cầu 2.2.1. Định nghĩa và các vị trí tương đối 2.2.2. Thể tích khối cầu và diện tích mặt cầu 2.2.3. Xác định tâm và bán kính khối cầu ngoại tiếp 2.2.4. Bài tập áp dụng 2.3. Thể tích lớn nhất nhỏ nhất và toán thực tế đối với khối tròn xoay 2.3.1. Phương pháp chung cho bào toán cực trị hình học 2.3.2. Một số ví dụ về trải hình và tính toán thực tế 2.3.3. Bài tập áp dụng
Chuyên đề hình học không gian cổ điển - Bùi Trần Duy Tuấn
giới thiệu đến thầy, cô và các em học sinh cuốn tài liệu chuyên đề hình học không gian cổ điển do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 301 trang hệ thống hóa đầy đủ kiến thức, dạng toán thường gặp và các bài tập trắc nghiệm – tự luận có lời giải chi tiết các vấn đề về hình học không gian cổ điển trong chương trình Hình học 11 và Hình học 12. Nội dung tài liệu : I. MỘT SỐ KIẾN THỨC HÌNH HỌC PHẲNG 1. Các đường trong tam giác 2. Tam giác ABC vuông tại A 3. Các hệ thức lượng trong tam giác thường 4. Hai tam giác đồng dạng và định lí Talet 5. Các công thức tính diện tích II. MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH TRONG HÌNH HỌC KHÔNG GIAN 1. Chứng minh đường thẳng vuông góc với mặt phẳng 2. Chứng minh hai đường thẳng vuông góc 3. Chứng minh hai mặt phẳng vuông góc 4. Hai định lí về quan hệ vuông góc 5. Định lí ba đường vuông góc, công thức diện tích hình chiếu CHỦ ĐỀ 1 : KHỐI ĐA DIỆN. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN  A. KHÁI NIỆM VỀ KHỐI ĐA DIỆN 1. Khái niệm về hình đa diện 2. Khái niệm về khối đa diện 3. Phân chia và lắp ghép các khối đa diện. Một số kết quả quan trọng B. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN – HAI HÌNH BẰNG NHAU I. PHÉP DỜI HÌNH TRONG KHÔNG GIAN 1. Phép tịnh tiến theo vectơ v 2. Phép đối xứng qua tâm O 3. Phép đối xứng qua đường thẳng d (phép đối xứng trục d) 4. Phép đối xứng qua mặt phẳng (P). Mặt phẳng đối xứng của một số hình thường gặp II. HAI HÌNH BẰNG NHAU III. PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN 1. Phép vị tự trong không gian 2. Hai hình đồng dạng C. KHỐI ĐA DIỆN LỒI. KHỐI ĐA DIỆN ĐỀU CHỦ ĐỀ 2 : GÓC TRONG KHÔNG GIAN 1. Góc giữa hai đường thẳng 2. Góc giữa đường thẳng và mặt phẳng 3. Góc giữa hai mặt phẳng [ads] CHỦ ĐỀ 3 : KHOẢNG CÁCH TRONG KHÔNG GIAN 1. Dạng 1: Khoảng cách từ một điểm đến một đường thẳng 2. Dạng 2: Khoảng cách từ một điểm đến một mặt phẳng 3. Dạng 3: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song 4. Dạng 4: Khoảng cách giữa hai đường thẳng chéo nhau CHỦ ĐỀ 4 : THỂ TÍCH KHỐI ĐA DIỆN A. CÔNG THỨC TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Thể tích khối chóp 2. Thể tích khối lăng trụ và khối hộp chữ nhật 3. Một số khái niệm và kỹ thuật cần nắm B. CÁC PHƯƠNG PHÁP VÀ DẠNG TOÁN TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Phương pháp tính toán trực tiếp 2. Phương pháp tính thể tích gián tiếp bằng cách phân chia lắp ghép các khối chóp 3. Phương pháp tỷ số thể tích 4. Bài toán min – max thể tích PHẦN MỞ RỘNG: ỨNG DỤNG HÌNH HỌC GIẢI TÍCH KHÔNG GIAN GIẢI HÌNH HỌC KHÔNG GIAN CỔ ĐIỂN  1. Hệ trục tọa độ trong không gian 2. Tọa độ vectơ 3. Tọa độ của điểm 4. Tích có hướng của hai vectơ 5. Vấn đề về góc 6. Vấn đề về khoảng cách CHỦ ĐỀ 5 : NÓN – TRỤ – CẦU A. MẶT NÓN 1. Mặt nón tròn xoay 2. Hình nón tròn xoay 3. Công thức diện tích và thể tích của hình nón 4. Giao tuyến của mặt tròn xoay và mặt phẳng B. MẶT TRỤ 1. Mặt trụ tròn xoay 2. Hình trụ tròn xoay 3. Công thức tính diện tích và thể tích của hình trụ 4. Tính chất C. MẶT CẦU 1. Định nghĩa 2. Vị trí tương đối của một điểm đối với mặt cầu 3. Vị trí tương đối của mặt phẳng và mặt cầu 4. Vị trí tương đối của đường thẳng và mặt cầu 5. Diện tích và thể tích mặt cầu 6. Một số khái niệm về mặt cầu ngoại tiếp khối đa diện
Kỹ năng giải bài toán khoảng cách trong hình học không gian - Trần Thanh Hữu
Tài liệu gồm 51 trang là Sáng Kiến Kinh Nghiệm của thầy Trần Thanh Hữu (GV trường THPT Nguyễn Thái Học – Gia Lai) nhằm chia sẻ một số giải pháp giúp học sinh 12 phát huy khả năng giải bài toán khoảng cách trong hình học không gian ở kỳ thi THPT Quốc gia môn Toán. Tài liệu đề cập đến 3 giải pháp để giải quyết bài toán khoảng cách trong hình học không gian: Giải pháp 1 : Vận dụng định nghĩa khoảng cách từ một điểm đến một đường thẳng và mặt phẳng để giải quyết các bài toán khoảng cách. Trong giải pháp này giáo viên cần ôn lại kiến thức về hình học không gian, hệ thức lượng trong tam giác đặc biệt là hệ thức lượng trong tam giác vuông, định lý Talet trong tam và hướng dẫn cho học sinh sử dụng linh hoạt chúng, giáo viên cần xây dựng các ví dụ đa dạng từ dạng đơn giản đến ví dụ đòi hỏi dạng tư duy, suy luận, có ví dụ ở dạng tự luận, có ví dụ ở dạng trắc nghiệm để học sinh thấy được khoảng cách từ một điểm đến đường thẳng và mặt phẳng là một kiến thức qua trọng, là nền tảng để đi giải quyết các bài toán tính khoảng cách trong hình học không gian. Giải pháp 2 : Vận dụng thể tích, tỷ số thể tích của tứ diện để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1 để tính khoảng cách trong hình học không gian đòi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng. Tuy nhiên, đối với học sinh yếu việc dựng hình chiếu đối với mình hơi quá sức. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết sử dụng linh hoạt công thức tính thể tích của một tứ diện, công thức tỷ số thể tích để tính khoảng cách từ một điểm đến một mặt phẳng dễ dàng hơn, không cần phải dựng hình chiếu; học sinh sẽ có động lực nghiên cứu, đam mê và yêu thích nội dung này. [ads] Giải pháp 3 : Vận dụng phương pháp tọa độ hóa để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1,2 để tính khoảng cách trong hình học không gian đồi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng, biết cách xác định chiều cao của hình chóp, biết cách vận dụng kiến thức hệ thức lượng trong tam giác một cách linh hoạt. Tuy nhiên đối với học sinh trung bình – yếu thì đôi khi còn quá khó vì kiến thức đó các em không còn nhớ. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết cách xây dựng hệ trục tọa độ, chuyển bài toán hình học không gian thuần túy về giả thuyết là một bài toán trong tọa độ Oxyz, sử dụng linh hoạt kiến thức tọa độ mà các em học sinh 12 vừa được học để giải quyết bài toán khoảng cách là một cách làm hợp lý, học sinh sẽ thấy được việc học của mình có ứng dụng, giải quyết được một số bài toán mà trước đây mình thấy rất khó, không thể giải quyết được thì nay lại làm được một cách đơn giản và đặc biệt là giải trong bài toán trắc nghiệm thì quá hiệu quả. Từ đó, tạo động lực cho các em học tập, nghiên cứu, tìm tòi ra những ứng dụng mới cho kiến thức của mình được học và từ đó có niềm yêu toán học.