Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 11 năm 2023 - 2024 sở GDĐT Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn học sinh giỏi Toán 11 năm 2023 – 2024 sở GD&ĐT Nam Định : + Có hai chung cư cao tầng xây cạnh nhau với khoảng cách giữa chúng là HK m 25. Để đảm bảo an ninh, trên nóc chung cư thứ hai người ta lắp camera ở vị trí C. Gọi A B lần lượt là vị trí thấp nhất và cao nhất trên chung cư thứ nhất mà camera có thể quan sát được (tham khảo hình vẽ). Hãy tính số đo góc ACB (phạm vi camera có thể quan sát được ở chung cư thứ nhất) biết rằng chiều cao của chung cư thứ hai là CK m AH m BH m 37 4 26 (làm tròn kết quả đến hàng đơn vị theo đơn vị độ). + Phòng chăm sóc khách hàng của công ty A làm việc từ 8h00 sáng đến 20h00 mỗi ngày. Nhân viên trực tổng đài làm việc theo 2 ca, mỗi ca 8 tiếng, ca I từ 8h00 đến 16h00 và ca II từ 12h00 đến 20h00. Tiền lương của nhân viên được tính theo giờ (bảng dưới đây): Khoảng thời gian làm việc Tiền lương/giờ 8h00 – 16h00 32 000 đồng 12h00 – 20h00 30 000 đồng. Để chăm sóc khách hàng tốt nhất thì cần tối thiểu 2 nhân viên trong khoảng từ 12h00 – 20h00, tối thiểu 10 nhân viên trong giờ cao điểm từ 12h00 – 16h00 và không quá 9 nhân viên trong khoảng từ 8h00 – 16h00. Do lượng khách hàng trong khoảng 8h00 – 16h00 thường đông hơn nên phòng chăm sóc khách hàng cần số nhân viên ca I ít nhất phải gấp 1,5 lần số nhân viên của ca II. Em hãy giúp công ty A chỉ ra cách huy động số lượng nhân viên cho mỗi ca sao cho chi phí tiền lương mỗi ngày là ít nhất. + Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh lớp 11 môn Toán THPT năm 2017 2018 sở GD và ĐT Nghệ An (Bảng A)
Nội dung Đề thi chọn HSG tỉnh lớp 11 môn Toán THPT năm 2017 2018 sở GD và ĐT Nghệ An (Bảng A) Bản PDF Đề thi chọn HSG tỉnh Toán lớp 11 THPT năm 2017 – 2018 sở GD và ĐT Nghệ An (Bảng A) gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào chiều ngày 16 tháng 03 năm 2018, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán lớp 11 THPT : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Hình chiếu vuông góc của điểm D lên các đường thẳng AB, BC lần lượt là M(-2; 2), N(2; -2); đường thẳng BD có phương trình 3x – 5y + 1 = 0. Tìm tọa độ điểm A. + Một hộp chứa 17 quả cầu đánh số từ 1 đến 17. Lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất sao cho tổng các số ghi trên 3 quả cầu đó là một số chẵn. [ads] + Cho hình chóp S.ABCD, có đáy là hình thoi cạnh a, SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính góc giữa đường thẳng SB và mặt phẳng (ABCD), biết rằng x = a. b) Tìm x theo a để tích AC.SD đạt giá trị lớn nhất.
Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF Đề thi Olympic Toán lớp 11 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán lớp 11 năm 2017 – 2018 : + Một đoàn tàu có 6 toa ở sân ga, trên sân ga có 6 hành khách chuẩn bị lên tàu, mỗi người độc lập với nhau và chọn toa tàu một cách ngẫu nhiên. a. Hỏi có bao nhiêu cách xếp 6 hành khách lên các toa tàu đó sao cho 6 người cùng lên một toa hoặc mỗi người lên một toa khác nhau? b. Tính xác suất sao cho một toa có 3 hành khách, một toa có 2 hành khách, 1 toa có 1 hành khách, còn 3 toa còn lại không có ai lên. [ads] + Biết rằng các số x, 2y – x, x + 2y theo thứ tự lập thành cấp số cộng. Đồng thời các số 1, y – 1, x + 2y – 1 theo thứ tự lập thành cấp số nhân. Hãy tìm x, y. + Xét khai triển (x + 1/x)^n (x ≠ 0, n ≥ 3, n ∈ N*). Biết tích của số hạng thứ tư tính từ phải sang và số hạng thứ tư kể từ trái sang bằng 14400. Tìm n.
Đề thi chọn HSG lớp 11 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Thanh Hóa
Nội dung Đề thi chọn HSG lớp 11 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Thanh Hóa Bản PDF Đề thi chọn HSG Toán lớp 11 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 09 tháng 3 năm 2018, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán lớp 11 : + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Một điểm M di động trên cạnh đáy BC (M khác B, C). Mặt phẳng (α) đi qua M đồng thời song song với hai đường thẳng SB và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi (α) và tìm vị trí của điểm M để thiết diện đó có diện tích lớn nhất. + Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh của lớp 11A, 3 học sinh của lớp 11B và 5 học sinh của lớp 11C thành một hàng ngang. Tính xác suất để không có học sinh của cùng một lớp đứng cạnh nhau. [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AM = AN (M, N không trùng với các đỉnh của tam giác). Đường thẳng d1 đi qua A và vuông góc với BN cắt cạnh BC tại H(6/5; -2/3), đường thẳng d2 đi qua M và vuông góc với BN cắt cạnh BC tại K(2/5; 2/3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng đỉnh A thuộc đường thẳng Δ: 5x + 3y + 13 = 0 và có hoành độ dương.