Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường Long Thạnh Kiên Giang

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường Long Thạnh Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kỳ 2 Toán lớp 12 năm 2018 – 2019 trường Long Thạnh – Kiên Giang, đề thi có mã đề 167 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài thi trong khoảng thời gian 90 phút. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2018 – 2019 trường Long Thạnh – Kiên Giang : + Phần gạch chéo trong hình bên dưới là hình phẳng giới hạn bởi đồ thị của hàm số f(x) = (x + 1)(x – 2)^2 với trục hoành. Hãy tính diện tích S đó. + Biểu thức V để tính thể tích vật thể tròn xoay tạo bởi khi quay hình phẳng giới hạn bởi đồ thị hàm số y = sinx và các đường thẳng x = 0, x = pi/3, trục hoành, quay quanh trục Ox là? [ads] + Các bồn chứa xăng vận chuyển trên xe cơ giới thường có dạng hình trụ nằm ngang với đáy là một hình elip mà không phải là hình tròn. Việc chế tạo theo hình elip có nhiều ưu điểm như: làm cho trọng tâm xe thấp, độ dao động của chất lỏng bên trong bồn sẽ thấp… Giả sử một bồn chở xăng có đáy là đường elip có phương trình x^2/9 + y^2/4 = 1 và chiều dài của bồn là 10 m. Sau khi bơm xăng cho một trạm xăng thì phần xăng còn lại cách đỉnh của elip 1 m (tham khảo hình vẽ). Tính gần đúng lượng xăng còn lại trong bồn xăng (làm tròn đến hàng đơn vị theo lít và giả sử các vật liệu chế tạo nên bồn xăng có độ dày không đáng kể).

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THPT Phú Lâm - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng … năm 2019, trường THPT Phú Lâm, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM có mã đề 985, đề thi có 07 trang với 30 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho điểm I(2;1;-3) và mặt phẳng (P) có phương trình là 3x + y – 2z + 1 = 0. a) Viết phương trình mặt cầu (S) tâm I và tiếp xúc với mặt phẳng (P). b) Tìm tọa độ tiếp điểm của mặt cầu (S) và mặt phẳng (P). [ads] + Cho số phức z = a – bi (a và b thuộc R). Mệnh đề nào sau đây đúng? A. Số phức z có phần thực bằng b, phần ảo bằng a. B. Số phức z có phần thực bằng a, phần ảo bằng b. C. Số phức z có phần thực bằng a, phần ảo bằng -b. D. Số phức z có phần thực bằng a, phần ảo bằng -bi. + Trong không gian Oxyz, cho tam giác ABC có A(1;1;1), B( 1;0;3), C(6;8;-10). Gọi M, N, K lần lượt là hình chiếu của trọng tâm tam giác ABC lên các trục Ox, Oy, Oz. Khi đó, mặt phẳng (MNK) có phương trình là?
Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THCS - THPT Thái Bình - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng 05 năm 2019, trường THCS – THPT Thái Bình, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THCS – THPT Thái Bình – TP HCM có mã đề 174, đề thi có 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 7,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THCS – THPT Thái Bình – TP HCM : + Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện |z + 3 – 4i| ≤ 9 là: A. hình tròn giới hạn bởi đường tròn tâm I (−3;4), bán kính R = 9, kể cả đường tròn đó. B. đường tròn tâm I (−3;4), bán kính R = 9. C. hình tròn giới hạn bởi đường tròn tâm I (3;-4), bán kính R = 9, kể cả đường tròn đó. D. hình tròn giới hạn bởi đường tròn tâm I (−3;4), bán kính R = 9, không kể đường tròn đó. + Trong không gian với hệ toạ độ (Oxyz), cho điểm A(1;2;-2) và mặt phẳng (P): 2x – 11y + 10z – 35 = 0 và. a) Viết phương trình tham số của đường thẳng OA. b) Tính khoảng cách từ A đến mặt phẳng (P). c) Viết phương trình mặt cẩu tâm A và tiếp xúc với mặt phẳng (P). + Tính diện tích hình phẳng giới hạn bởi đường cong (C ): y = x^3 – 3x và đường thẳng (d): y = x.
Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THPT Đa Phước - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng 04 năm 2019, trường THPT Đa Phước, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Đa Phước – TP HCM có mã đề 468, đề thi có 04 trang với 30 câu trắc nghiệm và 05 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Đa Phước – TP HCM : + Điểm nào trong hình vẽ bên (hình 16) là điểm biểu diễn của số phức thuộc đường tròn (C): x2 + y2 = 13. A. Điểm C, B, E. B. Điểm D, G, F. C. Điểm A, E, C. D. Điểm A, D, F, G. + Trong không gian Oxyz, cho các điểm A(1;2;0), B(−3;4;2). Tìm tọa độ điểm I trên trục Ox cách đều hai điểm A, B và viết phương trình mặt cầu tâm I, đi qua hai điểm A, B. + Trong không gian Oxyz, cho điểm A(2;-1;0) và mặt phẳng (P): x – 2y – 3z + 10 = 0. Phương trình của mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) là?
Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THPT Thủ Khoa Huân - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng 05 năm 2019, trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Thủ Khoa Huân – TP HCM có mã đề 001, đề thi có 06 trang với 30 câu trắc nghiệm và 06 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Thủ Khoa Huân – TP HCM : + Cho A(1;-1;2), B(3;1;4) và mặt phẳng (α): x + y – z + 1 = 0. Gọi M là điểm thuộc (α), cách đều A và B đồng thời khoảng cách từ M đến đường thẳng AB là nhỏ nhất. Tìm hoành độ của điểm M. + Cho (H) là hình phẳng giới hạn bởi parabol y = √3.x^2, cung tròn có phương trình y = √(4 – x^2) (với 0 ≤ x ≤ 2) và trục hoành (phần gạch sọc trong hình vẽ). Diện tích của (H) bằng? + Gọi S là diện tích của hình phẳng giới hạn bởi các đường y = e^x, y = 0, x = 0, x = 2. Mệnh đề nào dưới đây đúng?