Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 10 môn Toán cấp trường năm 2018 2019 trường Yên Phong 2 Bắc Ninh

Nội dung Đề thi HSG lớp 10 môn Toán cấp trường năm 2018 2019 trường Yên Phong 2 Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 trường Yên Phong 2 Bắc Ninh năm 2018 2019 Đề thi HSG Toán lớp 10 trường Yên Phong 2 Bắc Ninh năm 2018 2019 Vào ngày 26 tháng 01 năm 2019, trường THPT Yên Phong số 2, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 10 cấp trường năm học 2018 – 2019. Kỳ thi này nhằm tuyển chọn các học sinh giỏi để động viên, khích lệ các em trong trường, đồng thời chuẩn bị cho các em dự thi cấp tỉnh. Đề thi HSG Toán lớp 10 cấp trường năm 2018 – 2019 trường Yên Phong 2 Bắc Ninh bao gồm 7 bài toán, được biên soạn dưới dạng tự luận. Thời gian làm bài là 150 phút, lời giải và thang điểm cũng được cung cấp để học sinh dễ dàng tham khảo. Một số câu hỏi trong đề thi: Hàm số y = x^2 – (2m – 3)x – 2m + 2 Xét sự biến thiên và vẽ đồ thị hàm số khi m = 0. Xác định m để đồ thị hàm số cắt đường thẳng y = 3x – 1 tại hai điểm A, B phân biệt sao cho tam giác OAB vuông tại O. Tính x để AM và CN vuông góc với nhau trong tam giác ABC có AB = 1, AC = x và góc BAC = 60 độ. Chứng minh rằng với trọng tâm tam giác ABC ta có biểu thức: GA.GB + GB.GC + GC.GA = -1/6.(AB^2 + BC^2 + CA^2). Đề thi HSG Toán lớp 10 trường Yên Phong 2 Bắc Ninh năm 2018 2019 nhằm thúc đẩy sự phát triển toàn diện của học sinh, khuyến khích sự học tập và rèn luyện kỹ năng giải quyết bài toán cho các em. Đây cũng là cơ hội để các em thể hiện tài năng và kiến thức của mình trong lĩnh vực Toán học.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2022 - 2023 lần 1 trường chuyên KHTN - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2022 – 2023 lần 1 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 08 năm 2022. Trích dẫn đề thi HSG Toán 10 năm 2022 – 2023 lần 1 trường chuyên KHTN – Hà Nội : + Tìm tất cả các số nguyên n sao cho 5n – 1, 55n + 11 là hai số chính phương và 55n2 – 149 là số nguyên tố. + Xét 100 số nguyên a1, a2, …, a99, a100 có tính chất sau: a1 = a100 = 0 và với mỗi số nguyên dương 2 < i < 99 ta đều có ai > (ai-1 + ai+1)/2. Tìm giá trị nhỏ nhất có thể có của a23? + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Điểm P thuộc cung nhỏ CD của (O). M là trung điểm CD. Lấy Q thuộc đường thẳng AD sao cho PQ và PM vuông góc. Trên BQ lấy R sao cho PR vuông góc với CD. a) Chứng minh rằng PB và OM cắt nhau trên đường tròn đường kính QM. b) Chứng minh rằng tứ giác PCRD và tam giác RAB có diện tích bằng nhau. c) Hỏi có tất cả bao nhiêu vị trí của P để RA vuông góc RB? Hãy giải thích.
Đề thi học sinh giỏi Toán 10 năm 2021 - 2022 cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán 10 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi chọn học sinh giỏi Toán 10 năm 2021 - 2022 sở GDĐT Hà Nam
Đề thi chọn học sinh giỏi môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Nam : + Cho parabol 2 P y x m x m 2 2 1 và đường thẳng 2 d y m x m m 1 5 3 (với m là tham số). Biết đường thẳng d cắt đồ thị P tại hai điểm phân biệt A B. Tìm điều kiện của m để AB 26. + Cho phương trình 2 x b x c 2 1 0 với b c. Biết phương trình có hai nghiệm dương 1 2 x x thỏa mãn 1 2 x x 4. a) Chứng minh 2 2 4 2 b b c b) Tìm giá trị lớn nhất của biểu thức 2 P b c b b b 6 3 1 2022. + Cho ABC nội tiếp đường tròn O R và có trọng tâm là G. Các đường thẳng AG BG CG theo thứ tự cắt đường tròn O tại điểm thứ hai là M N P. Biết 1 1 1 2 sin sin sin R.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh: + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y – 5 = 0, đường thẳng AC đi qua điểm I(6;2). Tìm tọa độ các đỉnh của tam giác ABC. + Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. a) Chứng minh rằng a2IA + 2b2IB + 2c2IC = 0. b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. + Cho hàm số f(x) = (x2 + mx + 1)/(x2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác.