Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

600 câu vận dụng cao phương pháp tọa độ trong không gian ôn thi THPT môn Toán

Tài liệu gồm 71 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 600 câu vận dụng cao (VDC) phương pháp tọa độ trong không gian có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 600 câu vận dụng cao phương pháp tọa độ trong không gian ôn thi THPT môn Toán: + Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A1B1C1 có A1(√3; −1; 1), hai đỉnh B, C thuộc trục Oz và AA1 = 1, (C không trùng với O). Biết u = (a; b; 2) là một véc-tơ chỉ phương của đường thẳng A1C. Tính T = a2 + b. + Trong không gian với hệ trục tọa độ Oxyz cho các điểm A(2; 3; 3), B(−2; −1; 1). Gọi (S) và (S0) là hai mặt cầu thay đổi nhưng luôn tiếp xúc với đường thẳng AB lần lượt tại các tiếp điểm A, B đồng thời tiếp xúc ngoài với nhau tại M(a; b; c). Tính giá trị của a + b + c biết rằng khoảng cách từ M tới mặt phẳng (P): x + 2y − 2z + 2018 = 0 đạt giá trị lớn nhất. [ads] + Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a, cạnh bên SA = a và SA vuông góc với đáy. Gọi E là trung điểm của AD. Tính diện tích S của mặt cầu ngoại tiếp hình chóp S.CDE.

Nguồn: toanmath.com

Đọc Sách

138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao
Tài liệu gồm 85 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển chọn 138 bài toán cực trị hình học giải tích không gian Oxyz mức độ vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 3 và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn 138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao: + Cho đường thẳng 1 2 2 1 1 x y z và hai điểm A(0;-1;3), B(1;-2;1). Tìm tọa độ điểm M thuộc đường thẳng sao cho 2 2 MA MB 2 đạt giá trị nhỏ nhất. + Cho đường thẳng 1 2 1 1 2 x y z và ba điểm A(1;3;-2), B(0;4;-5), C(1;2;-4). Biết điểm M a b c thuộc đường thẳng sao cho 2 2 2 MA MB MC đạt giá trị nhỏ nhất. Khi đó, tổng abc bằng bao nhiêu? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 2 1 1 x y z và hai điểm A(-1;-1;6), B(2;-1;0). Biết điểm M thuộc đường thẳng sao cho biểu thức 2 2 MA MB 3 đạt giá trị nhỏ nhất là Tmin. Khi đó, Tmin bằng bao nhiêu?
Chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 304 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ chỉ phương của đường thẳng. DẠNG 2 Viết phương trình đường thẳng. DẠNG 3 Tìm tọa độ điểm liên quan đến đường thẳng. DẠNG 4 Góc giữa đường thẳng và mặt phẳng, giữa hai đường thẳng. DẠNG 5 Khoảng cách từ điểm đến đường thẳng, giữa hai đường thẳng. DẠNG 6 Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. DẠNG 7 Bài toán liên quan đến đường thẳng – mặt phẳng – mặt cầu. DẠNG 8 Điểm thuộc đường thẳng. DẠNG 9 Phương trình đường thẳng liên quan đến góc và khoảng cách. DẠNG 10 Hình chiếu và bài toán cực trị. DẠNG 11 Phương trình đường thẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 262 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ pháp tuyến của mặt phẳng. DẠNG 2 Viết phương trình mặt phẳng dùng đường thẳng. DẠNG 3 Vị trí tương đối giữa hai mặt phẳng. DẠNG 4 Tìm tọa độ điểm liên quan đến mặt phẳng. DẠNG 5 Khoảng cách từ một điểm để một mặt phẳng. DẠNG 6 Ví trị tương đối giữa mặt cầu và mặt phẳng. DẠNG 7 Viết phương trình mặt cầu liên quan đến mặt phẳng. DẠNG 8 Điểm thuộc mặt phẳng. DẠNG 9 Phương trình mặt phẳng không dùng đường thẳng. DẠNG 10 Phương trình theo đoạn chắn. DẠNG 11 Hình chiếu của điểm lên mặt phẳng. DẠNG 12.1 Các bài toán cực trị phần 1. DẠNG 12.2 Các bài toán cực trị phần 2. DẠNG 13 Các bài toán liên quan đến góc. DẠNG 14 Phương trình mặt phẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề hệ trục tọa độ Oxyz ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề hệ trục tọa độ Oxyz ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Điểm và vecto trong hệ trục tọa độ. DẠNG 2 Tích vô hướng và ứng dụng. DẠNG 3 Mặt cầu trong không gian. DẠNG 4 Cực trị liên quan đến hệ trục tọa độ. DẠNG 5 Hệ trục tọa độ trong đề thi của Bộ Giáo dục và Đào tạo.