Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT Gia Bình số 1 - Bắc Ninh lần 3

Đề thi thử Toán THPTQG 2018 trường THPT Gia Bình số 1 – Bắc Ninh lần 3 mã đề 101 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức trong thời điểm cận kề kỳ thi chính thức THPT Quốc gia năm 2018 để các em học sinh củng cố và ra soát lại các kiến thức đã ôn tập, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Gia Bình số 1 – Bắc Ninh lần 3 : + Cho phương trình 2018^(x^2 – 1) + (x^2 – 1).2017^x = 1. Mệnh đề nào sau đây là đúng? A. Phương trình đã cho có nghiệm duy nhất. B. Phương trình đã cho có nhiều hơn hai nghiệm. C. Phương trình đã cho có tổng các nghiệm bằng 0. D. Phương trình đã cho có hai nghiệm dương phân biệt. [ads] + Cho hàm số y = f(x) = x^3 + 6x^2 + 9x + 3 (C).Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó với (C) cắt các trục Ox, Oy lần lượt tại A và B sao cho tam giác OAB có diện tích bằng 1. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán? + Một nhóm học sinh gồm 6 nam trong đó có Bình và 4 nữ trong đó có An được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ tổng kết năm học. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Bình không ngồi cạnh An là?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2016 môn Toán trường C Nghĩa Hưng - Nam Định
Đề thi thử THPT Quốc gia 2016 môn Toán trường C Nghĩa Hưng – Nam Định có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số trùng phương. Câu 2: Tìm các giá trị của m để hàm số đạt cực trị thỏa mãn điều kiện cho trước. Câu 3: a) Giải phương trình lượng giác. b) Tính môđun của số phức z. Câu 4: a) Giải phương trình logarit. b) Tính xác suất để trong tốp ca đó có ít nhất một học sinh nữ. Câu 5: Tính tích phân. Câu 6: Viết phương trình đường thẳng AB. Viết phương trình phẳng (α). Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (ACI). Câu 8: Tìm tọa độ các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Văn Trỗi - Hà Tĩnh lần 2
Câu 1: Cho hàm số trùng phương a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số bậc 3. b) Tìm m để phương trình có 3 nghiệm phân biệt. Câu 2 1) Tính giá trị biểu thức lượng giác. 2) Giải phương trình bậc 2 của logarit. Câu 3:Tính tích phân bằng phương pháp tích phân từng phần. Câu 4: a) Tính xác suất để số được chọn chia hết cho 3. b) Tìm phần thực và phần ảo của số phức z. Câu 5: Tìm tọa độ điểm H và tính độ dài MH. Câu 6: Tính thể tích khối chóp S.ABCD và khoảng cách giữa HC và SB. Câu 7: Tìm tọa độ đỉnh D, biết D thuộc đường tròn (C). Câu 8: Giải hệ phương trình. Câu 9: Tìm giá trị lớn nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Đoàn Thượng - Hải Dương lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường Đoàn Thượng – Hải Dương lần 3 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Cho hàm số trùng phương 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Biện luận theo m số nghiệm của phương trình. Câu 2 1) Tính môđun của số phức z. 2) Giải bất phương trình mũ. Câu 3:Tính tích phân bằng phương pháp đặt ẩn phụ. Câu 4: Viết phương trình mặt phẳng qua A và vuông góc với d. Tìm tọa độ điểm A’ đối xứng với A qua đường thẳng d. Câu 5: 1) Giải phương trình lượng giác. 2) Bài toán xác suất liên quan tới bóng đá. Câu 6: Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm C đến mặt phẳng (BDM). Câu 7: Giải hệ phương trình. Câu 8: Viết phương trình đường thẳng BC. Câu 9: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử THPT Quốc gia 2016 môn Toán trường Nguyễn Hữu Cầu - TP.HCM
Đề thi thử THPT Quốc gia 2016 môn Toán trường Nguyễn Hữu Cầu – TP.HCM có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 5 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2: Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng d. Câu 3: a) Tìm tọa độ điểm M biểu diễn số phức z trong mặt phẳng tọa độ Oxy. b) Giải phương trình logarit. Câu 4: Tính tích phân bằng phương pháp đổi biến rồi từng phần. Câu 5: Viết phương trình đường thẳng d đi qua A và vuông góc với (P). Tìm tọa độ điểm B đối xứng với A qua (P). Câu 6 a) Tính giá trị của biểu thức lượng giác. b) Chọn ngẫu nhiên ba số từ tập hợp số. Tính xác suất để ba số được chọn có tổng là một số lẻ. Câu 7: Tính theo a thể tích của khối chóp S.AMCD và khoảng cách giữa hai đường thẳng DM, SC. Câu 8: Tìm tọa độ điểm trong hình học Oxy. Câu 9: Giải bất phương trình vô tỉ. Câu 10: Tìm giá trị lớn nhất của biểu thức 3 biến dạng đối xứng.