Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập chuyên đề tổ hợp - xác suất - Trần Quốc Nghĩa

Tài liệu gồm 75 trang phân dạng, hướng dẫn giải, bài tập tự luận và trắc nghiệm các dạng toán về chủ đề Tổ hợp – Xác suất (Chương 2 – Đại số và Giải tích 11) Vấn đề 1. QUI TẮC ĐẾM + Dạng 1. Sử dụng các qui tắc để thực hiện bài toán đếm số phương án + Dạng 2. Sử dụng các qui tắc để thực hiện bài toán đếm số các hình thành từ tập A Vấn đề 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP + Dạng 1. Thực hiện bài toán đếm theo hoán vị, tổ hợp, chỉnh hợp + Dạng 2. Rút gọn và tính các giá trị của biểu thức + Dạng 3. Chứng minh đẳng thức, bất đẳng thức + Dạng 4. Giải phương trình, hệ phương trình, bất phương trình Vấn đề 3. NHỊ THỨC NIU-TƠN + Dạng 1. Khai triển nhị thức Niu-tơn + Dạng 2. Giá trị của hệ số trong khai triển nhị thức Niu-tơn + Dạng 3. Tính tổng + Dạng 4. Chứng minh + Dạng 5. Giải phương trình, bất phương trình [ads] Vấn đề 4. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ + Dạng 1. Mô tả không gian mẫu. Tìm số phần tử của không gian mẫu + Dạng 2. Xác định biết cố. Tính số phần tử của tập hợp này + Dạng 3. Tính xác suất của một biến cố Vấn đề 5. CÁC QUI TẮC TÍNH XÁC SUẤT + Dạng 1. Xác định tính xung khắc, độc lập + Dạng 2. Mô tả biến cố theo các phép toán hoặc phiên dịch thành lời + Dạng 3. Tìm xác suất của một biến cố bằng cách sử dụng công thức xác suất + Dạng 4. Tìm xác suất của biến cố là hợp của các biến cố xung khắc + Dạng 5. Tìm xác suất của biến cố là giao các biến cố độc lập Vấn đề 6. [NC] BIẾN NGẪU NHIÊN RỜI RẠC + Dạng 1. Xác định tập giá trị của một biến ngẫu nhiên rời rạc + Dạng 2. Lập bảng phân phối bố xác suất của biến ngẫu nhiên rời rạc + Dạng 3. Cho bảng phân phối bố xác suất của biến ngẫu nhiên + Dạng 4. Tính kì vọng, phương sai, độ lệch chuẩn của một biến ngẫu nhiên rời rạc BÀI TẬP TỔNG HỢP CHỦ ĐỀ TỔ HỢP – XÁC SUẤT VÀ BÀI TẬP TRONG CÁC ĐỀ THI ĐH – CĐ BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ TỔ HỢP – XÁC SUẤT BẢNG ĐÁP ÁN TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Bài giảng quy tắc đếm, hoán vị, chỉnh hợp và tổ hợp
Tài liệu gồm 31 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề quy tắc đếm, hoán vị, chỉnh hợp và tổ hợp, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2: Tổ Hợp Và Xác Suất. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm vững quy tắc cộng, quy tắc nhân. + Hiểu và phân biệt được các khái niệm: Hoán vị, chỉnh hợp, tổ hợp. Kĩ năng: + Vận dụng được quy tắc cộng và nhân cho các bài toán đếm. + Giải được các dạng toán đếm liên quan đến tổ hợp, chỉnh hợp. + Giải được phương trình liên quan đến công thức tổ hợp, chỉnh hợp. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Quy tắc đếm. + Dạng 2: Các bài toán hoán vị, chỉnh hợp tổ hợp. + Dạng 3: Phương trình, bất phương trình chứa công thức tổ hợp. + Dạng 4: Các bài toán liên quan đến chọn số. + Dạng 5. Các bài toán liên quan đến hình học. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Tuyển chọn một số bài toán đặc sắc về tổ hợp
Tài liệu gồm 20 trang, tuyển chọn một số bài toán đặc sắc về tổ hợp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2.
Tài liệu chủ đề nhị thức Niu-tơn
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề nhị thức Niu-tơn, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Công thức nhị thức Niu-tơn. 2. Một số kết quả quan trọng. 3) Chú ý. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 . Tìm hệ số, số hạng trong khai triển không có điều kiện. + Bước 1: Viết khai triển dạng tổng quát. + Bước 2: Dựa vào giả thiết yêu cầu tìm hệ số của m x giải phương trình m f k k. + Bước 3: Thay vào biểu thức của T và kết luận. Dạng 2 . Tìm hệ số, số hạng trong khai triển có điều kiện. + Bước 1: Tìm n dựa vào điều kiện đề bài cho. + Bước 2: Quy về dạng 1 đã biết. Dạng 3 . Tìm hệ số, số hạng trong khai triển nhiều hạng tử. + Bước 1: Viết khai triển thu gọn về 2 hạng tử. + Bước 2: Dựa vào chỉ số mũ của x để biện luận tìm i và k. + Bước 3: Kết luận về hệ số của số hạng cần tìm.
Các dạng bài toán đếm
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề các dạng bài toán đếm, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. DẠNG 1 : BÀI TOÁN ĐẾM SỐ CÓ YẾU TỐ CHIA HẾT. Một số dấu hiệu chia hết cần lưu ý: + Số n chia hết cho 2 khi chữ số tận cùng của nó là 0, 2, 4, 6, 8. Ví dụ: 24; 508 …. + Số n chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3. Ví dụ: 126; 540 …. + Số n chia hết cho 4 khi 2 chữ số tận cùng của nó phải chia hết cho 4. Ví dụ: 116; 544 …. + Số n chia hết cho 5 khi chữ số tận cùng của nó là 0 hoặc 5. Ví dụ: 80, 205 …. + Số n chia hết cho 6 khi nó đồng thời chia hết cho 2 và 3. + Số n chia hết cho 8 khi 3 chữ số cuối cùng của nó phải chia hết cho 8. + Số n chia hết cho 9 khi tổng các chữ số của nó chia hết cho 9. + Số n chia hết cho 10 khi chữ số tận cùng của nó là 0. + Số n chia hết cho 12 khi nó đồng thời chia hết cho 3 và 4. + Số n chia hết cho 15 khi nó đồng thời chia hết cho 3 và 5. + Số n chia hết cho 20 khi hai chữ số tận cùng của nó là 00; 20; 40; 60 và 80 + Số n chia hết cho 25 khi hai chữ số tận cùng của nó là 25; 50; 75; và 00. DẠNG 2 : BÀI TOÁN ĐẾM SỐ CÓ RÀNG BUỘC LỚN BÉ, SỐ LẦN XUẤT HIỆN CHỮ SỐ. DẠNG 3 : BÀI TOÁN CHỌN NGƯỜI VÀ ĐỒ VẬT. DẠNG 4 : BÀI TOÁN ĐẾM CÓ YẾU TỐ HÌNH HỌC. Một số kết quả quan trọng cần lưu ý: 1. Với n điểm cho trước trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng được tạo ra là 2Cn, số véc tơ có điểm đầu và điểm cuối lấy từ n đỉnh là 2An. 2. Cho đa giác lồi n cạnh, số đường chéo của đa giác là 2 C n n. 3. Cho đa giác lồi n cạnh, xét các tam giác có 3 đỉnh là 3 đỉnh của đa giác, khi đó: Số tam giác có đúng 1 cạnh chung với đa giác là n n 4; Số tam giác có đúng 2 cạnh chung với đa giác là n; Số tam giác không có cạnh chung với đa giác là 3 4 C n n n n. 4. Cho đa giác đều có 2n cạnh, số các tam giác vuông có 3 đỉnh là các đỉnh của đa giác n n 2 2. 5. Cho đa giác đều có n cạnh, số tam giác nhọn được tạo thành từ 3 trong n đỉnh của đa giác là 3 Cn (số tam giác tù + số tam giác vuông). 6. Cho đa giác đều có n cạnh, số tam giác tù có 3 đỉnh là các đỉnh của đa giác được tính bởi công thức: Nếu n chẵn 2 2 2 n n C; Nếu n lẻ 2 1 2 n n C. 7. Cho đa giác lồi n cạnh, xét các tứ giác có 4 đỉnh là các đỉnh của đa giác, khi đó: Số tứ giác có đúng 1 cạnh chung với đa giác là 2 4 5 n n C n A; Số tứ giác có đúng 2 cạnh chung với đa giác là 5 5 2 n n n n B; Số tứ giác có đúng 3 cạnh chung với đa giác là n C; Số tứ giác không có cạnh chung với đa giác là 4 C A B C n. 8. Cho đa giác đều có 2n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH CHỮ NHẬT là 2 Cn. 9. Cho đa giác đều có 4n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH VUÔNG là n.