Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GDĐT Hải Phòng

Nhằm hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2021, tối thứ Bảy ngày 29 tháng 05 năm 2021, sở Giáo dục và Đào tạo UBND thành phố Hải Phòng tổ chức kỳ thi khảo sát chất lượng học sinh khối 12 THPT môn Toán năm học 2020 – 2021; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online) để đảm bảo an toàn trước sự ảnh hưởng của dịch bệnh Covid-19. Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án (đáp án được gạch chân và đánh dấu màu đỏ). Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng : + Ông An dự định làm một vườn hoa dạng elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ dưới. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là 16m và 8m, 1 2 F F là hai tiêu điểm của elip. Phần A, B dùng để trồng hoa, phần C, D dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là 200.000 đồng và 100.000 đồng. Tính tổng tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn). + Một bồn hình trụ đang chứa đầy nước, được đặt nằm ngang, chiều dài bồn là 4m, bán kính đáy 1,2m. Người ta rút nước trong bồn một lượng tương ứng như hình vẽ. Thể tích của lượng nước còn lại trong bồn xấp xỉ bằng? + Cho hình hộp ABCD A B C D có đáy ABCD là hình thoi cạnh a, BD a 3. Hình chiếu vuông góc của B trên mặt phẳng A B C D là giao điểm của A C và B D (tham khảo hình vẽ). Góc giữa hai mặt phẳng A B C D và ADD A bằng 0 60. Thể tích khối hộp ABCD A B C D bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán Nguyễn Phú Khánh lần 2
Đề thi thử THPT Quốc gia 2018 môn Toán – Nguyễn Phú Khánh lần 2 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Khi nói về hàm số y = (x^2 + (m + 1)x + m + 1)/(x + 1), m là tham số, phát biểu nào sau đây là sai? A. Đồ thị hàm số luôn có điểm cực đại, cực tiểu và khoảng cách giới hạn điểm đó bằng 2√5 B. Gọi y1 và y2 là các giá trị cực đại và cực tiểu của hàm số, khi đó số trị biểu thức y2 – y1 không phụ thuộc tham số m C. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cách đều gốc tọa độ O D. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cùng với gốc tọa độ tạo thành tam giác vuông tại O + Có bao nhiêu phát biểu đúng về hàm số f(x) = x^4 – 2x^2 + 3 trên đoạn [-1; 1]? [ads] I. Hàm số y = f(x) + 2017 đồng biến trên khoảng (-1; 0) II. Hàm số y = 2017.f(x) đồng biến trên khoảng (-1; 0) III. Hàm số y = -2017.f(x) nghịch biến trên khoảng (-1; 0) IV. Hàm số y = f(x) nghịch biến trên khoảng (a; b) thì số trị của b^7 – a^3 nằm trong khoảng (0; 2) V. Hàm số y = f(x) đồng biến trên khoảng (c; d) thì c^2017 + d^2016 < 0 + Trong không gian với hệ tọa độ Oxyz, cho điểm M(3; -1; 2). Trong các phát biểu sau, phát biểu nào sai? A. Tọa độ hình chiếu của M trên mặt phẳng (xOy) là M'(3; -1; 0) B. Tọa độ hình chiếu của M trên trục Oz là M'(0;0;2) C. Tọa độ đối xứng của M qua gốc tọa độ O là M'(-3; 1; -2) D. Khoảng cách từ M đến gốc tọa độ O bằng 14^1/3
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hàn Thuyên - Bắc Ninh lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hàn Thuyên – Bắc Ninh lần 1 gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, nội dung đề thi bao gồm cả chương trình Toán 11 và 12, có đáp án tất cả các mã đề .
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1 gồm 8 mã đề, mỗi mã đề gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Nội dung đề thi bao gồm cả chương trình Toán 11 và 12, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = f(x) = x^3 + 6x^2 + 9x + 3.Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho OA = 2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán? A. 0 B. 1 C. 2 D. 3 + Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng, nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo những cuốn sổ ghi chép của mình, ông ta xác định rằng: nếu giá vé vào cửa là 20 USD/người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 USD/người thì sẽ mất 100 khách hàng hoặc giảm đi 1 USD/người thì sẽ có thêm 100 khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 USD lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp Giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để nhập là lớn nhất? [ads] A. 21 USD/người B. 18 USD/người C. 14 USD/người D. 16 USD/người + Trong không gian, cho các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại B. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau
Đề thi chất lượng giữa HKI năm học 2017 - 2018 môn Toán 12 trường THPT B Hải Hậu - Nam Định
Đề thi chất lượng giữa HKI năm học 2017 – 2018 môn Toán 12 trường THPT B Hải Hậu – Nam Định gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = f(x) có đạo hàm f'(x) = x^2 + 1 ∀x∈R. Mệnh đề nào dưới đây đúng? A. Hàm số nghịch biến trên khoảng (1; +∞) B. Hàm số đồng biến trên khoảng (-∞; +∞) C. Hàm số nghịch biến trên khoảng (-1; 1) D. Hàm số nghịch biến trên khoảng (-∞; 0) [ads] + Số các đỉnh hoặc số các mặt của hình đa diện bất kỳ đều thỏa mãn: A. Lớn hơn hoặc bằng 4 B. Lớn hơn 4 C. Lớn hơn hoặc bằng 5 D. Lớn hơn 6 + Hàm số y = 1/4.x^4 – 2.x^2 + 1 có: A. Một điểm cực đại và hai điểm cực tiểu B. Một điểm cực tiểu và một điểm cực đại C. Một điểm cực tiểu và hai điểm cực đại D. Một điểm cực đại và không có điểm cực tiểu