Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GDĐT Hải Phòng

Nhằm hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2021, tối thứ Bảy ngày 29 tháng 05 năm 2021, sở Giáo dục và Đào tạo UBND thành phố Hải Phòng tổ chức kỳ thi khảo sát chất lượng học sinh khối 12 THPT môn Toán năm học 2020 – 2021; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online) để đảm bảo an toàn trước sự ảnh hưởng của dịch bệnh Covid-19. Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án (đáp án được gạch chân và đánh dấu màu đỏ). Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng : + Ông An dự định làm một vườn hoa dạng elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ dưới. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là 16m và 8m, 1 2 F F là hai tiêu điểm của elip. Phần A, B dùng để trồng hoa, phần C, D dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là 200.000 đồng và 100.000 đồng. Tính tổng tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn). + Một bồn hình trụ đang chứa đầy nước, được đặt nằm ngang, chiều dài bồn là 4m, bán kính đáy 1,2m. Người ta rút nước trong bồn một lượng tương ứng như hình vẽ. Thể tích của lượng nước còn lại trong bồn xấp xỉ bằng? + Cho hình hộp ABCD A B C D có đáy ABCD là hình thoi cạnh a, BD a 3. Hình chiếu vuông góc của B trên mặt phẳng A B C D là giao điểm của A C và B D (tham khảo hình vẽ). Góc giữa hai mặt phẳng A B C D và ADD A bằng 0 60. Thể tích khối hộp ABCD A B C D bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm các trường THPT thuộc huyện Nam Trực, tỉnh Nam Định; đề thi mã đề 501; hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút. Trích dẫn Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực – Nam Định : + Cho a, b là các số thực dương khác 1, đường thẳng d song song trục hoành cắt trục tung, đồ thị hàm số y = ax, đồ thị hàm số y = bx lần lượt tại H, M, N (như hình bên). Biết HM = 3MN. Mệnh đề nào sau đây đúng? + Trong không gian với hệ trục Oxyz, cho điểm A(2;-2;2) và mặt cầu (S): x2 + y2 + (z + 2)2 = 1. Điểm M di chuyển trên mặt cầu (S) đồng thời thỏa mãn OM.AM = 6. Điểm M luôn thuộc mặt phẳng nào dưới đây? + Cho khối chóp S.ABC có đáy là tam giác vuông cân tại B. Khoảng cách từ A đến mặt phẳng (SBC) bằng a2, SAB = SCB = 90°. Khi độ dài cạnh AB thay đổi, thể tích khối chóp S.ABC có giá trị nhỏ nhất bằng?
Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 2 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 111). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long – Quảng Ninh : + Trong không gian cho hệ trục Oxyz; cho A(1;1;2), B(-4;0;11), C(0;–21;0). Có bao nhiêu điểm D sao cho A, B, C, D là bốn đỉnh của một hình bình hành. A. Có vô số điểm D C. Có 2 điểm D B. Có duy nhất một điểm D D. Có 3 điểm D. + Cho mặt cầu S(O;9). Một hình nón có đỉnh và đường tròn đáy nằm trên mặt cầu S. Khi thể tích của hình nón lớn nhất, diện tích đường tròn đáy của hình nón thuộc khoảng nào dưới đây? + Trong không gian cho hệ trục Oxyz; lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c), D với a, b, c dương. Biết diện tích tam giác ABC bằng 3/2 (đvdt) và thể tích tứ diện ABCD đạt giá trị lớn nhất. Khi đó phương trình mặt phẳng (ABD) là mx + ny + pz + 1 = 0. Tính m + n + p.
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi mã đề 102 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 07 tháng 03 năm 2023. Trích dẫn đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở GD&ĐT Lạng Sơn : + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 6%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó nhận được số tiền hơn 100triệu đồng bao gồm cả gốc và lãi? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra. A. 13 năm. B. 12 năm. C. 14 năm. D. 11 năm. + Trên mặt phẳng tọa độ, cho parabol và là đường thẳng đi qua điểm. Biết 2 P y x d M 1 2 rằng diện tích hình phẳng giới hạn bởi và d P bằng. Gọi là giao điểm của và 4 3 A Bd P. Độ dài đoạn thẳng AB thuộc khoảng nào sau đây? + Cho hình lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a. Gọi ABC.ABC MN lần lượt là trung điểm các cạnh và BC BC PQ lần lượt là tâm các mặt và ABBA ACCA. Thể tích khối tứ diện MNPQ bằng?
Đề thi thử THPT Quốc gia 2023 môn Toán lần 3 trường THPT chuyên Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2022 – 2023 môn Toán lần 3 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút. Trích dẫn Đề thi thử THPT Quốc gia 2023 môn Toán lần 3 trường THPT chuyên Thái Bình : + Một chiếc hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng (các quả cầu đôi một khác nhau). Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất 1 quả màu đỏ bằng? + Cho hàm số f(x) = x3 − 2x + 1. Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị lớn nhất của hàm số g(x) = |f2(x) – 2f(x) + m| trên đoạn (-1;3] bằng 8. Tính tổng các phần tử của S. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ bên). Tính tỉ số V1/V2.