Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi lập đội tuyển HSG Toán THPT năm 2020 2021 sở GDĐT Đắk Lắk (ngày 2)

Thứ Tư ngày 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi thành lập các đội tuyển dự thi chọn học sinh giỏi Quốc gia THPT năm học 2020 – 2021 môn Toán (ngày thi thứ hai). Đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 2) gồm 01 trang với 04 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 2) : + Tìm số nguyên dương n nhỏ nhất sao cho tồn tại các số nguyên a1, a2 … an để đa thức fn(x) = x^2n+2 – 2(a1 + a2 + … + an)^2.x^n+1 + (a1^4 + a2^4 + … + an^4 + 1) có ít nhất một nghiệm nguyên. + Cho a, b là hai số nguyên dương sao cho (a + b^3)/(a^2 + 3ab + 3b^2 – 1) là một số nguyên. Chứng minh rằng a^2 + 3ab + 3b^2 – 1 chia hết cho lập phương của một số nguyên lớn hơn 1. + Cho tam giác ABC, đường tròn (O) cắt cạnh BC tại hai điểm D, E (D nằm giữa B và E), cắt cạnh CA tại hai điểm F, G (F nằm giữa C và G) và cắt cạnh AB tại hai điểm H, I (H nằm giữa A và I). Gọi M là giao điểm của DF và EI, N là giao điểm của EG và FH, P là giao điểm của GI và HD. Chứng minh rằng các đường thẳng AM, BN và CP đồng quy tại một điểm.

Nguồn: toanmath.com

Đọc Sách

Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang
Nội dung Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán lớp 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8? File WORD (dành cho quý thầy, cô):