Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học không gian cổ điển - Bùi Trần Duy Tuấn

giới thiệu đến thầy, cô và các em học sinh cuốn tài liệu chuyên đề hình học không gian cổ điển do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 301 trang hệ thống hóa đầy đủ kiến thức, dạng toán thường gặp và các bài tập trắc nghiệm – tự luận có lời giải chi tiết các vấn đề về hình học không gian cổ điển trong chương trình Hình học 11 và Hình học 12. Nội dung tài liệu : I. MỘT SỐ KIẾN THỨC HÌNH HỌC PHẲNG 1. Các đường trong tam giác 2. Tam giác ABC vuông tại A 3. Các hệ thức lượng trong tam giác thường 4. Hai tam giác đồng dạng và định lí Talet 5. Các công thức tính diện tích II. MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH TRONG HÌNH HỌC KHÔNG GIAN 1. Chứng minh đường thẳng vuông góc với mặt phẳng 2. Chứng minh hai đường thẳng vuông góc 3. Chứng minh hai mặt phẳng vuông góc 4. Hai định lí về quan hệ vuông góc 5. Định lí ba đường vuông góc, công thức diện tích hình chiếu CHỦ ĐỀ 1 : KHỐI ĐA DIỆN. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN  A. KHÁI NIỆM VỀ KHỐI ĐA DIỆN 1. Khái niệm về hình đa diện 2. Khái niệm về khối đa diện 3. Phân chia và lắp ghép các khối đa diện. Một số kết quả quan trọng B. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN – HAI HÌNH BẰNG NHAU I. PHÉP DỜI HÌNH TRONG KHÔNG GIAN 1. Phép tịnh tiến theo vectơ v 2. Phép đối xứng qua tâm O 3. Phép đối xứng qua đường thẳng d (phép đối xứng trục d) 4. Phép đối xứng qua mặt phẳng (P). Mặt phẳng đối xứng của một số hình thường gặp II. HAI HÌNH BẰNG NHAU III. PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN 1. Phép vị tự trong không gian 2. Hai hình đồng dạng C. KHỐI ĐA DIỆN LỒI. KHỐI ĐA DIỆN ĐỀU CHỦ ĐỀ 2 : GÓC TRONG KHÔNG GIAN 1. Góc giữa hai đường thẳng 2. Góc giữa đường thẳng và mặt phẳng 3. Góc giữa hai mặt phẳng [ads] CHỦ ĐỀ 3 : KHOẢNG CÁCH TRONG KHÔNG GIAN 1. Dạng 1: Khoảng cách từ một điểm đến một đường thẳng 2. Dạng 2: Khoảng cách từ một điểm đến một mặt phẳng 3. Dạng 3: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song 4. Dạng 4: Khoảng cách giữa hai đường thẳng chéo nhau CHỦ ĐỀ 4 : THỂ TÍCH KHỐI ĐA DIỆN A. CÔNG THỨC TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Thể tích khối chóp 2. Thể tích khối lăng trụ và khối hộp chữ nhật 3. Một số khái niệm và kỹ thuật cần nắm B. CÁC PHƯƠNG PHÁP VÀ DẠNG TOÁN TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Phương pháp tính toán trực tiếp 2. Phương pháp tính thể tích gián tiếp bằng cách phân chia lắp ghép các khối chóp 3. Phương pháp tỷ số thể tích 4. Bài toán min – max thể tích PHẦN MỞ RỘNG: ỨNG DỤNG HÌNH HỌC GIẢI TÍCH KHÔNG GIAN GIẢI HÌNH HỌC KHÔNG GIAN CỔ ĐIỂN  1. Hệ trục tọa độ trong không gian 2. Tọa độ vectơ 3. Tọa độ của điểm 4. Tích có hướng của hai vectơ 5. Vấn đề về góc 6. Vấn đề về khoảng cách CHỦ ĐỀ 5 : NÓN – TRỤ – CẦU A. MẶT NÓN 1. Mặt nón tròn xoay 2. Hình nón tròn xoay 3. Công thức diện tích và thể tích của hình nón 4. Giao tuyến của mặt tròn xoay và mặt phẳng B. MẶT TRỤ 1. Mặt trụ tròn xoay 2. Hình trụ tròn xoay 3. Công thức tính diện tích và thể tích của hình trụ 4. Tính chất C. MẶT CẦU 1. Định nghĩa 2. Vị trí tương đối của một điểm đối với mặt cầu 3. Vị trí tương đối của mặt phẳng và mặt cầu 4. Vị trí tương đối của đường thẳng và mặt cầu 5. Diện tích và thể tích mặt cầu 6. Một số khái niệm về mặt cầu ngoại tiếp khối đa diện

Nguồn: toanmath.com

Đọc Sách

Chuyên đề góc giữa hai mặt phẳng - Trần Mạnh Tường
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính góc giữa hai mặt phẳng trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Định nghĩa : Góc giữa hai mặt phẳng là góc giữa hai đường thẳng bất kì, lần lượt vuông góc với hai mặt phẳng đó. 2. Một số phương pháp tính góc giữa hai mặt phẳng : Có 3 phương pháp sau đây hay được sử dụng để tính giá trị góc giữa hai mặt phẳng: Phương pháp 1 : Dùng định nghĩa. Kinh nghiệm: Muốn sử dụng được phương pháp này thì ta phải quan sát, phán đoán xem với đặc điểm đã cho của bài toán thì ta có thể xác định hoặc dựng được 2 đường thẳng lần lượt vuông góc với 2 mặt phẳng mà bài toán yêu cầu tính góc giữa chúng hay không? [ads] Phương pháp 2 : Xác định góc. Ý tưởng của phương pháp này là ta dựng rõ hình hài của góc giữa hai đường thẳng, sau đó dùng các hệ thức lượng để tính giá trị của góc này. Kinh nghiệm: Cách này thường dùng khi 2 mặt phẳng có thể xác định được giao tuyến và có các yếu tố vuông góc. Có 2 loại phương pháp khi sử dụng phương pháp này: + Phương pháp xác định góc loại 1. + Phương pháp xác định góc loại 2. Phương pháp 3 : Dùng khoảng cách. Bình luận: Phương pháp này có ưu điểm là ta không cần xác định rõ hình hài của góc giữa hai mặt phẳng, chỉ cần tính khoảng cách từ điểm đến mặt phẳng và điểm đến đường thẳng, các khoảng cách này lại cũng có thể tính thông qua tỉ số giữa diện tích tam giác với một cạnh hoặc tỉ số giữa thể tích một đa diện với diện tích của 1 mặt. II. VÍ DỤ MINH HỌA Bao gồm 12 câu hỏi và bài toán trắc nghiệm tính góc giữa hai mặt phẳng, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.
Chuyên đề khối đa diện và thể tích của chúng - Phạm Hoàng Long
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, tóm tắt lý thuyết, công thức cần ghi nhớ và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích của chúng, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu chuyên đề khối đa diện và thể tích của chúng – Phạm Hoàng Long: Bài 1 . Khối đa diện. 1. Các định nghĩa. 2. Cách tính thể tích khối đa diện. 3. Nhắc lại kiến thức cũ. 3.1. Hệ thức trong tam giác. 3.2. Diện tích một số hình phẳng. 4. Các dạng bài tập nhận diện khối đa diện. + Dạng 1. Nhận diện các khối đa diện. + Dạng 2. Tính chất đối xứng của hình đa diện. + Dạng 3. Các tính chất khác của đa diện. + Dạng 4. Phân chia, lắp ghép khối đa diện. Bài 2 . Hình chóp. 1. Định nghĩa hình chóp. 2. Công thức. 3. Các dạng toán hình chóp. + Dạng 1. Khối chóp có một cạnh bên vuông góc với đáy. + Dạng 2. Khối chóp có một mặt bên vuông góc với đáy. + Dạng 3. Khối chóp đều. 3.1. Khối chóp tứ giác đều. 3.2. Khối chóp tam giác đều. 3.3. Các khối chóp đa giác đều khác. + Dạng 4. Khối tứ diện. + Dạng 5. Khối chóp khác. + Dạng 6. Tỉ lệ thể tích trong hình chóp. [ads] Bài 3 . Hình lăng trụ. 1. Định nghĩa hình lăng trụ. 2. Các dạng toán hình lăng trụ. + Dạng 1. Hình lập phương. + Dạng 2. Hình hộp chữ nhật. + Dạng 3. Lăng trụ đứng đáy tứ giác. 3.1. Đáy hình vuông. 3.2. Đáy hình bình hành – hình thoi. + Dạng 4. Lăng trụ đứng đáy tam giác. 4.1. Đáy tam giác thường. 4.2. Đáy tam giác vuông cân. 4.3. Đáy tam giác vuông. 4.4. Đáy tam giác đều. 4.5. Đáy tam giác cân. + Dạng 5. Hình hộp. + Dạng 6. Khối lăng trụ xiên. + Dạng 7. Tỉ lệ khối lăng trụ. Bài 4 . Ứng dụng và max – min (GTLN – GTNN).
Thể tích khối đa diện phức hợp (VDC) - Đặng Việt Đông
Tài liệu gồm 52 trang, được tổng hợp bởi thầy Đặng Việt Đông, hướng dẫn giải bài toán thể tích khối đa diện phức hợp, đây là một lớp bài toán vận dụng cao (VDC) thường gặp trong đề thi thử tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Thể tích khối đa diện: Thể tích khối chóp, Thể tích khối lăng trụ, Thể tích khối lập phương, Thể tích khối hộp chữ nhật. 2. Thể tích khối đa diện được phân chia: Khối chóp tam giác, Khối chóp tứ giác có đáy là hình hành, Thể tích khối lăng trụ tam giác, Khối hộp. [ads] II. CÁC DẠNG BÀI TẬP TƯƠNG TỰ + Khối đa diện cắt ra từ một khối chóp. + Khối chóp cụt. + Khối hình hộp khác. + Khối lăng trụ khác. + Khối da diện cắt ra từ khối lăng trụ.
Tổng ôn tập TN THPT 2020 môn Toán Thể tích khối đa diện
Tài liệu gồm 50 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Thể tích khối đa diện: 1. Công thức tính thể tích khối chóp. 2. Công thức tính thể tích khối lăng trụ. + Công thức tính thể tích khối lập phương. + Công thức tính thể tích khối hộp chữ nhật. 3. Xác định diện tích đáy. 4. Xác định chiều cao. + Hình chóp có một mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. + Hình chóp có hai mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. + Hình chóp có các cạnh bên bằng nhau: Chân đường cao của hình chóp là tâm đường tròn ngoại tiếp đa giác đáy.