Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 2021 trường PTNK TP HCM

Thứ Hai ngày 13 tháng 07 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM : + Cho các phương trình: x^2 + ax + 3 = 0 và x^2 + bx + 5 = 0 với a, b là tham số. a) Chứng minh nếu ab ≥ 16 thì trong hai phương trình trên có ít nhất một phương trình có nghiệm. b) Giả sử hai phương trình trên có nghiệm chung x0. Tìm a, b sao cho |a| + |b| có giá trị nhỏ nhất. + Cho phương trình: 3x^2 – y^2 = 23^n với n là số tự nhiên. a) Chứng minh nếu n chẵn thì phương trình đã cho không có nghiệm nguyên (x;y). b) Chứng minh nếu n lẻ thì phương trình đã cho có nghiệm nguyên (x;y). [ads] + Cho số tự nhiên a = 3^13.5^7.7^20. a) Gọi A là tập hợp các số nguyên dương k sao cho k là ước của a và k chia hết cho 105. Hỏi tập A có bao nhiêu phần tử? b) Giả sử B là một tập con bất kỳ của A có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của B sao cho tích của chúng là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thanh Hóa gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình: nx^2 + x – 2 = 0 (1), với n là tham số. a) Giải phương trình (1) khi n = 0. b) Giải phương trình (1) khi n = 1. [ads] + Cho nửa đường tròn (O) đường kính MN = 2R. Gọi (d) là tiếp tuyến của (O) tại N. Trên cung MN lấy điểm E tùy ý (E không trùng với M và N), tia ME cắt (d) tại điểm F. Gọi P là trung điểm của ME, tia PO cắt (d) tại điểm Q. 1. Chứng minh ONFP là tứ giác nội tiếp. 2. Chứng minh: OF vuông góc với MQ và PM.PF = PO.PQ. 3. Xác định vị trí điểm E trên cung MN để tổng MF + 2ME đạt giá trị nhỏ nhất.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Lời giải của thầy Nguyễn Chí Dũng. Trích một số bài toán trong đề: + Cho điểm C thuộc nửa đường tròn đường kính AB. Kẻ tiếp tuyến Ax với nửa đường tròn đó (Ax nằm trên cùng nửa mặt phẳng có bờ là đường thẳng AB chứa nửa đường tròn). Tia phân giác của góc CAx cắt nửa đường tròn tại D. Kéo dài AD và BC cắt nhau tại E. Kẻ EH vuông góc với Ax tại H a. Chứng minh tứ giác AHEC nội tiếp. b. Chứng minh hai góc ABD và DBC bằng nhau. c. Chứng minh tam giác ABE cân. d. Tia BD cắt AC và Ax lần lượt tại F và K. Chứng minh AKEF là hình thoi. [ads] + Ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận là ngọn tháp thắp đèn gần bờ biển dùng để định hướng cho tàu thuyền giao thông trong khu vực vào ban đêm. Đây là ngọn Hải đăng được xem là cổ xưa và cao nhất Việt Nam, chiều cao của ngọn đèn so với mặt nước biển là 65m. Hỏi: a. Một người quan sát đứng tại vị trí đèn của Hải đăng nhìn xa tối đa bao nhiêu km trên mặt biển? b. Cách bao xa thì một người quan sát đứng ở trên tàu bắt đầu trông thấy ngọn đèn này, biết rằng mắt người quan sát đứng ở trên tàu có độ cao 5m so với mặt nước biển? (Cho biết bán kính Trái Đất gần bằng 6400km và điều kiện quan sát trên biển là không bị che khuất).
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lai Châu
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu gồm 5 bài toán tự luận, có lời giải chi tiết.