Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Sytu xin chào quý thầy cô giáo và các em học sinh lớp 9. Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023-2024 của trường THPT chuyên Hà Nội Amsterdam. Đề thi sẽ diễn ra vào thứ Năm ngày 14 tháng 9 năm 2023. Đề thi HSG Toán lớp 9 vòng 1 năm 2023-2024 của trường THPT chuyên Hà Nội Amsterdam đưa ra các câu hỏi thú vị và phong phú. Ví dụ như: 1. Cho các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, bạn hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd. 2. Trong tam giác ABC vuông tại A (AB < AC), đường thẳng PF song song với đường thẳng CM. Chứng minh rằng tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3. Xác định tất cả các tập con tốt của tập hợp các số nguyên dương theo yêu cầu đã đề ra. Đây là một cơ hội tuyệt vời để các em học sinh thể hiện khả năng và kiến thức Toán của mình. Mong rằng đề thi sẽ giúp các em rèn luyện và phát triển kỹ năng giải bài toán hiệu quả. Chúc các em thành công và tự tin thể hiện tài năng của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho đường tròn (O). Qua điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AM, AN (M, N là hai tiếp điểm) và cát tuyến ABC với đường tròn (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh: A, M, O, I, N thuộc một đường tròn; b) Chứng minh: IA là tia phân giác của MIN; c) Vẽ dây CD song song MN, H là giao điểm của BD và MN. Chứng minh: HM = HN. + Cho phương trình: x2 – (m + 5)x + 3m + 6 = 0. Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh tam giác vuông có cạnh huyền bằng 5. + Cho biểu thức: P a) Rút gọn P; b) Tính giá trị của P với x 9 45; c) Tìm các giá trị chính phương của x để P có giá trị nguyên.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 19/3/2017, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG Toán 9 năm 2016 - 2017 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2016 – 2017 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.