Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội : + Cho A B là hai điểm cố định nằm trên đường tròn tâm O, bán kính R. Giả sử C là điểm cố định trên tia đối của tia BA. Một cát tuyến thay đổi qua C cắt đường tròn (O) tại D và E (D nằm giữa C E). Các đường tròn ngoại tiếp các tam giác BCD và ACE cắt nhau tại giao điểm thứ hai M. Biết rằng bốn điểm OBME tạo thành tứ giác OBME. Chứng minh rằng: a) Tứ giác OBME nội tiếp. b) 2 2 CD CE CO R. c) M luôn di chuyển trên một đường tròn cố định. + Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn một cách duy nhất ở dạng 2 1 1 x y xy với x y là hai số nguyên dương. + Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều biểu diễn được dưới dạng lũy thừa của 2 với số mũ tự nhiên. Biết rằng phương trình bậc hai 2 ax bx c 0 (1) có cả hai nghiệm đều là số nguyên. Chứng minh rằng hai nghiệm của phương trình (1) bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bình Định
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bình Định. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bình Định, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bình Định : + Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được 2/3 công việc. Nếu làm riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? [ads] + Cho đường tròn tâm O, bán kính R và một đường thẳng d không cắt đường tròn (O). Dựng đường thẳng OH vuông góc với đường thẳng d tại điểm H. Trên đường thẳng d lấy điểm K (khác điểm H ), qua K vẽ hai tiếp tuyến KA và KB với đường tròn (O), (A và B là các tiếp điểm) sao cho A và H nằm về hai phía của đường thẳng OK. a) Chứng minh tứ giác KAOH nội tiếp được trong đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại điểm I. Chứng minh rằng IA.IB = IH.IO và I là điểm cố định khi điểm K chạy trên đường thẳng d cố định. c) Khi OK = 2R, OH = R√3. Tính diện tích tam giác KAI theo R. + Cho phương trình: x^2 – (m – 1)x – m = 0. Tìm m để phương trình trên có một nghiệm bằng 2. Tính nghiệm còn lại.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Điện Biên
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Điện Biên tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Điện Biên. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Điện Biên, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Điện Biên : + Cho tứ giác ABCD nội tiếp (O;R) và có hai ñường chéo AC, BD vuông góc với nhau tại I (I khác O). Kẻ ñường kính CE. 1. Chứng minh tứ giác ABDE là hình thang cân. 2. Chứng minh: √(AB^2 + BC^2 + CD^2 + DA^2) = 2√2R. 3. Từ A, B kẻ các ñường thẳng vuông góc với CD lần lượt cắt BD, AC tại F và K. Tứ giác ABKF là hình gì? [ads] + Cho phương trình: x^2 + ax + b + 1 = 0 (a, b là các tham số). Tìm a, b ñể phương trình có 2 nghiệm x1, x2 thỏa mãn: x1 – x2 = 3 và x1^3 – x2^3 = 9. + Cho các số nguyên a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng: A = (1 + a^2)(1 + b^2)(1 + c^2) là một số chính phương.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Đồng Nai
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Đồng Nai. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Đồng Nai, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Đồng Nai : + Bác B vay ở một ngân hàng 100 triệu đồng để sản xuất trong thời hạn 1 năm. Lẽ ra đúng 1 năm sau bác phải trả cả tiền vốn lẫn tiền lãi, song bác đã được ngân hàng cho kéo dài thời hạn thêm 1 năm nữa, số tiền lãi của năm đầu được gộp vào với tiền vốn để tính lãi năm sau và lãi suất vẫn như cũ. Hết 2 năm bác B phải trả tất cả 121 triệu đồng. Hỏi lãi suất cho vay của ngân hàng đó là bao nhiêu phần trăm trong 1 năm? [ads] + Cho tam giác MNP vuông tại N có MN = 4a, NP = 3a với 0 < a ∈ R. Tính theo a diện tích xung quanh của hình nón tạo bởi tam giác MNP quay quanh đường thẳng MN. + Cho tam giác ABC nội tiếp đường tròn (O) có hai đường cao BD và CE cắt nhau tại trực tâm H. Biết ba góc CAB, ABC, BCA  đều là góc nhọn. 1) Chứng minh bốn điểm B, C, D, E cùng thuộc một đường tròn. 2) Chứng minh DE vuông góc với OA.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Đồng Tháp
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Đồng Tháp. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Đồng Tháp, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Đồng Tháp : + Chiều cao trung bình của 40 học sinh lớp 9A là 1,628 m. Trong đó chiều cao trung bình của học sinh nam là 1,64m và chiều cao trung bình của học sinh nữ là 1,61m. Tính số học sinh nam, số học sinh nữ của lớp 9A. [ads] + Người ta muốn tạo một cái khuôn đúc dạng hình trụ, có chiều cao bằng 16 cm, bán kính đáy bằng 8cm, mặt đáy trên lõm xuống dạng hình nón và khoảng cách từ đỉnh hình nón đến mặt đáy dưới hình trụ bằng 10cm (như hình vẽ bên). Tính diện tích toàn bộ mặt khuôn (lấy π = 3,14 ). + Trong hệ trục tọa độ Oxy, cho đường thẳng (x): y = 6x + b và parabol (P): y = ax^2 (a khác 0). a) Tìm giá trị của b để đường thẳng (d) đi qua điểm M(0;9). b) Với b tìm được, tìm giá trị cảu a để (d) tiếp xúc với (P).