Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào 10 môn Toán (chuyên Tin) 2022 - 2023 trường chuyên Hùng Vương - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Tin) năm học 2022 – 2023 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề vào 10 môn Toán (chuyên Tin) 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ : + Cho hai số thực a b phân biệt. Quanh đường tròn viết n số thực đôi một khác nhau 3 n sao cho mỗi số bằng tổng của hai số đứng liền kề nó. Tìm n và các số được viết nếu hai số đầu tiên được viết lần lượt là a và b. + Cho tam giác ABC nội tiếp đường tròn (O) có đường cao 1 AA đường trung tuyến BB1 và đường phân giác trong 1 CC. Gọi DEF lần lượt là giao điểm của 11 1 AA BB CC với (O). Biết ABC 111 là tam giác đều. a) Chứng minh rằng tam giác ABC đều. b) Gọi M là trung điểm của đoạn thẳng CE N là trung điểm của đoạn thẳng CD I là giao điểm của AN và FM. Tính AIF. c) Tia CI cắt AF và (O) lần lượt tại J và K. Chứng minh rằng I là trung điểm của CK. Tính tỉ số JA JF. + Chứng minh rằng nếu m n là hai số tự nhiên thỏa mãn 2 2 2022 2023 mm nn thì 2022 1 m n là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng Ngày 02 tháng 08 năm 2020, sở Giáo dục và Đào tạo tỉnh Sóc Trăng đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề tuyển sinh gồm có 01 trang với 06 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Cho chiếc nón lá có đường kính và chiều cao nhất định, tính diện tích xung quanh của chiếc nón đó. 2. Một công ty sản xuất khẩu trang trong bối cảnh đại dịch COVID – 19. Hỏi sau khi đóng cửa một xưởng, công ty còn lại sẽ sản xuất đủ số lượng khẩu trang theo hợp đồng sau bao nhiêu ngày? 3. Chứng minh tính chất của một tứ giác nội tiếp, tính tích MB.MD theo AC trong một tam giác vuông. Đề tuyển sinh THPT môn Toán năm 2020 – 2021 sở GD ĐT Sóc Trăng là một cơ hội để học sinh thử sức và cải thiện kiến thức của mình trong môn Toán. Hy vọng rằng các em sẽ có kết quả tốt trong kỳ thi này.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Vào ngày thi, học sinh sẽ phải làm bài thi môn Toán trong thời gian 120 phút. Đề thi bao gồm 5 bài toán dạng tự luận, với đáp án và lời giải chi tiết được cung cấp sau khi kết thúc bài thi. Một trong những bài toán trong đề thi là về việc tính quãng đường của một người đi xe đạp từ điểm A đến điểm B và trở lại. Bài toán đòi hỏi học sinh tìm ra vận tốc khi lên dốc và xuống dốc, sau đó dựa vào thời gian trên để tính toán quãng đường AB. Bài toán khác đưa ra một bài toán về tam giác nội tiếp trong đường tròn, yêu cầu học sinh chứng minh các tính chất và tìm diện tích của tam giác. Các phần bài toán được thiết kế để thách thức tư duy logic và khả năng giải quyết vấn đề của thí sinh. Các bài toán trong đề thi không chỉ giúp học sinh ôn tập kiến thức môn Toán mà còn giúp phát triển kỹ năng phân tích, logic và giải quyết vấn đề của học sinh. Đây là cơ hội để các thí sinh thể hiện khả năng và kiến thức của mình trong môn học này.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình Vào thứ ... ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Hòa Bình đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề tuyển sinh lớp 10 THPT môn Toán cho năm 2020 - 2021 từ sở GD&ĐT Hòa Bình bao gồm một trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi đề có đáp án và lời giải chi tiết. Trích dẫn một số bài toán từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Hòa Bình: Một chiếc ti vi giảm giá hai lần, mỗi lần giảm giá 10% so với giá đang bán, sau khi giảm giá hai lần thì giá còn lại là 16,200,000 đồng. Hỏi giá bán ban đầu của chiếc ti vi là bao nhiêu? Cho tam giác nhọn ABC (AB khác AC) có các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh rằng: Tứ giác AEHF nội tiếp. 2) Chứng minh rằng: ADE = ADF. 3) Chứng minh rằng: Đường tròn ngoại tiếp tam giác EDF đi qua trung điểm M của cạnh BC. Cho tam giác ABC vuông tại A, có AB = 6cm, góc ABC = 60 độ. Tính chu vi tam giác. Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD ĐT Hòa Bình cung cấp cho thí sinh những câu hỏi thú vị và bổ ích để đánh giá kiến thức và kỹ năng của họ. Hãy cùng chúng tôi chuẩn bị và tự tin vượt qua kỳ thi tuyển sinh sắp tới!
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Lâm Đồng Ngày thứ Ba 14 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Lâm Đồng đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề tuyển sinh lớp 10 THPT môn Toán của sở GD&ĐT Lâm Đồng gồm có 01 trang với 12 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi đi kèm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 THPT môn Toán do sở GD&ĐT Lâm Đồng phát hành: 1. Cho đường tròn (O;R) đi qua hai điểm B và C không trùng với đường kính. Một điểm M di chuyển trên đường tròn (O) và G là trọng tâm của tam giác MBC. Chứng minh rằng điểm G chuyển động trên một đường tròn cố định. 2. Một bể nước hình trụ có chiều cao 25dm, bán kính đáy là 8dm. Tính dung tích bể khi đầy? (π ≈ 3,14). 3. Vườn hoa hình chữ nhật có diện tích 91m2, chiều dài lớn hơn chiều rộng 6m. Hãy tính chu vi của vườn hoa. Các câu hỏi trên cung cấp cho thí sinh cơ hội thực hành và kiểm tra kiến thức Toán theo năm học. Đề thi được thiết kế để đánh giá khả năng tự giải quyết vấn đề và kỹ năng giải toán của học sinh. Hy vọng rằng các thí sinh sẽ ôn tập kỹ trước khi tham gia kỳ thi tuyển sinh để có kết quả tốt nhất.