Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 cụm THPT Lục Nam - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi cấp cơ sở môn Toán 10 năm học 2023 – 2024 cụm THPT Lục Nam, tỉnh Bắc Giang; đề thi hình thức 70% trắc nghiệm (40 câu – 14 điểm) + 30% tự luận (03 câu – 06 điểm), thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 cụm THPT Lục Nam – Bắc Giang : + Một người đi bộ xuất phát từ B trên một bờ sông (coi là đường thẳng) với vận tốc 6 km h để gặp một người chèo thuyền xuất phát cùng lúc từ vị trí A với vận tốc 3 km h (giả thiết bỏ qua vận tốc dòng nước). Nếu người chèo thuyền di chuyển theo đường vuông góc với bờ thì phải đi một khoảng cách AH m 300 trong đó BH m 1400. Tuy nhiên, nếu di chuyển theo cách đó thì hai người không đến cùng một lúc. Để hai người đến cùng một lúc thì mỗi người di chuyển về vị trí C nằm giữa H và B. Thời gian từ khi xuất phát cho đến khi hai người gặp nhau là bao nhiêu? A. 10 phút B. 20 phút. C. 17 phút. D. 27 phút. + Lớp 10A có 10 học sinh biết chơi bóng đá, 7 học sinh biết chơi bóng chuyền, 6 học sinh biết chơi bóng rổ, có 4 học sinh biết chơi cả bóng đá, bóng chuyền; có 3 học sinh biết chơi cả bóng đá, bóng rổ; 2 học sinh biết chơi cả bóng chuyền, bóng rổ; 1 học sinh biết chơi cả ba môn thể thao này. Hỏi số học sinh biết chơi ít nhất 1 môn là? + Một cầu treo có dây chuyền đỡ là một phần của parabol như hình vẽ. Đầu cuối của dây được gắn vào các điểm A B trên mỗi trục AA’, BB’ có độ cao 30m. Đoạn A B trên nền cầu có độ dài 200m. Gọi QPHCIJK là các điểm chia đoạn A B thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây chuyền: QQ PP HH CC II JJ KK được gọi là các dây cáp treo. Biết dây cáp treo ngắn nhất CC m 5 hãy tính tổng độ dài các dây cáp treo.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 - 2021 sở GDĐT Hà Tĩnh
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Một cửa hàng chuyên kinh doanh xe máy điện với chi phí mua vào là 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe này, chủ cửa hàng dự định giảm giá bán và ước tính rằng, theo tỉ lệ nếu cứ giảm 100 nghìn đồng mỗi chiếc thì số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải bán với giá mới là bao nhiêu để sau khi giảm giá, lợi nhuận thu được sẽ là cao nhất? + Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác r = √3 và độ dài đường cao kẻ từ đỉnh A là h thỏa mãn 1/h2 = 1/AB2 + 1/AC2. Tính giá trị T = (sin B)^2 – (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết rằng tam giác ABC cân tại B và DC = √5/5.
Đề thi HSG cấp trường Toán 10 năm 2020 - 2021 trường Cẩm Xuyên - Hà Tĩnh
Ngày … tháng 01 năm 2021, trường THPT Cẩm Xuyên, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2020 – 2021. Đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC và M, N là hai điểm lần lượt thuộc hai cạnh AB, CD sao cho AB = 6BM, DC = 3DN. a) Tính độ dài của vectơ AB + AD theo a. b) Chứng minh ba điểm M, N, G thẳng hàng. + Cho hàm số y = x2 + mx + 1 (m là tham số). a) Lập bảng biến thiên của hàm số đã cho khi m = -4. b) Tìm điều kiện của tham số m để đồ thị hàm số đã cho cắt đường thẳng y = x + 1 tại hai điểm phân biệt nằm về một phía của trục hoành. + Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ dưới đây. Chứng minh rằng phương trình (1 – c)x2 + (2 – b)x + 1 – a = 0 luôn có hai nghiệm phân biệt.
Đề thi HSG Toán 10 cấp trường năm 2020 - 2021 trường THPT Nguyễn Huệ - Quảng Nam
Đề thi HSG Toán 10 cấp trường năm 2020 – 2021 trường THPT Nguyễn Huệ – Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có ma trận và lời giải chi tiết. Ma trận đề thi HSG Toán 10 cấp trường năm 2020 – 2021 trường THPT Nguyễn Huệ – Quảng Nam:CHỦ ĐỀMÔ TẢHệ phương trình.Thông hiểu: Giải hệ hai phương trình bậc nhất hai ẩn.Phương trình bậc hai một ẩn.Nhận biết: Giải phương trình quy về phương trình bậc hai một ẩn. Nhận biết: Chứng minh phương trình bậc hai luôn có nghiệm hoặc vô nghiệm với mọi tham số.Hệ thức Vi-et và ứng dụng.Vận dụng thấp: Tìm tất cả các giá trị của tham số m thỏa điều kiện cho trước.Hàm số y = ax^2 (a khác 0).Nhận biết: Vẽ parabol. Thông hiểu: Tương quan giữa đường thẳng và parabol.Biến đổi đơn giản biểu thức chứa căn thức bậc hai.Vận dụng thấp: Rút gọn biểu thức chứa căn thức bậc hai.Một số hệ thức về cạnh và đường cao trong tam giác vuông.Thông hiểu: Chứng minh đẳng thức có liên quan đến cạnh và đường cao của tam giác vuông. Vận dụng cao: Ứng dụng một số hệ thức về cạnh và đường cao trong tam giác vuông để giải một số bài toán liên quan. Vận dụng cao: Ứng dụng một số hệ thức về cạnh và đường cao trong tam giác vuông để giải một số bài toán liên quan.