Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn

Nội dung Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn Bản PDF - Nội dung bài viết Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn Tài liệu này được biên soạn bởi thầy Nguyễn Ngọc Sơn, chuyên về hệ thức Vi-et và cách áp dụng nó vào việc giải các bài toán trong Toán lớp 9. Tài liệu bao gồm 07 trang với các dạng sau: 1. Dạng 1: Nhẩm nghiệm của phương trình bậc hai 1.1. Dạng đặc biệt: Phương trình bậc hai có một nghiệm là 1 hoặc – 1. 1.2. Cho phương trình bậc hai, có một hệ số chưa biết, cho trước một nghiệm, tìm nghiệm còn lại và chỉ ra hệ số chưa biết của phương trình. 2. Dạng 2: Lập phương trình bậc hai 2.1. Lập phương trình bậc hai biết hai nghiệm. 2.2. Lập phương trình bậc hai có hai nghiệm thoả mãn biểu thức chứa hai nghiệm của một phương trình cho trước. 3. Dạng 3: Tìm hai số biết tổng và tích của chúng. 4. Dạng 4: Dạng toán về biểu thức liên hệ giữa các nghiệm của phương trình bậc hai. 4.1. Tính giá trị của biểu thức chứa nghiệm. 4.2. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình không phụ thuộc tham số. 4.3. Tìm giá trị của tham số thỏa mãn biểu thức nghiệm cho trước. 4.4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức nghiệm. 5. Dạng 5: Xét dấu các nghiệm của phương trình bậc hai. Đây là một tài liệu hữu ích giúp học sinh nắm vững hơn về hệ thức Vi-et và cách áp dụng nó vào việc giải các bài toán trong Toán lớp 9. Các ví dụ và bài tập trong tài liệu sẽ giúp học sinh hiểu rõ hơn về cách giải và áp dụng hệ thức Vi-et trong thực tế.

Nguồn: sytu.vn

Đọc Sách

Giải bài toán bằng cách lập phương trình - hệ phương trình
Tài liệu gồm 76 trang, hướng dẫn phương pháp giải bài toán bằng cách lập phương trình – hệ phương trình, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. LOẠI 1 : BÀI TOÁN LIÊN QUAN TỚI DIỆN TÍCH, TAM GIÁC, TỨ GIÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, dựa vào điều kiện tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Diện tích tam giác vuông = nữa tích hai cạnh góc vuông. + Diện tích hình chữ nhật = dài nhân rộng. + Diện tích hình vuông = cạnh nhân cạnh. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 2 : BÀI TOÁN NĂNG SUẤT. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan N = 1/t; t = 1/N; CV = N.t. Trong đó: N: là năng suất làm việc; t: là thời gian hoàn thành công việc; 1: là công việc cần thực hiện; CV: số công việc thực hiện trong thời gian t. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 3 : BÀI TOÁN LIÊN QUAN TỚI CHUYỂN ĐỘNG. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán tìm kết quả thích hợp, trả lời, nên rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 4 : BÀI TOÁN LIÊN QUAN TỚI CÔNG VIỆC – NƯỚC CHẢY. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 5 : CÁC BÀI TOÁN KHÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các lưu ý thêm + Toán nồng độ dung dịch: Biết rằng m lít chất tan trong M lít dung dịchthì nồng độ phàn trăm là m/M.100%. + Toán nhiệt lượng: m Kg nước giảm t0C thì toả ra một nhiệt lượng Q = m.t (Kcal). m Kg nước tăng t0C thì thu vào một nhiệt lượng Q = m.t (Kcal). + Toán lãi suất: 1 n A A r n với An: vốn sau n chu kỳ (năm, tháng, …); A: vốn ban đầu; n số chu kỳ (năm, tháng,…). B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ
Hàm số, đồ thị và sự tương giao - Dương Minh Hùng
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề hàm số, đồ thị và sự tương giao, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết I. Hàm số bậc nhất 1. Khái niệm hàm số bậc nhất. 2. Tính chất. 3. Đồ thị của hàm số y = ax + b (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 5. Vị trí tương đối của hai đường thẳng. 6. Hệ số góc của đường thẳng y = ax + b. 7. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai 1. Khái niệm hàm số bậc hai. 2. Tính chất 3. Đồ thị của hàm số y = ax2 (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax2 (a khác 0). 5. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác  0). B. Phân dạng toán cơ bản Dạng toán 1. Vẽ đồ thị hàm số. Dạng toán 2. Tìm tọa độ giao điểm của đường thẳng và Parabol. Dạng toán 3. Tìm phương trình đường thẳng, phương trình Parabol. Dạng toán 4. Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện
Phương trình bậc hai, hệ thức Vi-ét và ứng dụng - Dương Minh Hùng
Tài liệu gồm 26 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề phương trình bậc hai, hệ thức Vi-ét và ứng dụng, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Công thức nghiệm. 2. Công thức nghiệm thu gọn. 3. Định lí Vi-ét. 4. Ứng dụng Vi-ét (nhẫm nghiệm đặc biệt của phương trình bậc hai). 5. Các ứng dụng vào giải toán chứa tham số. B. Phân dạng toán cơ bản Dạng 1. Giải phương trình quy về bậc nhất. Dạng 2. Giải phương trình bậc hai. Dạng 3. Tính giá trị biểu thức nghiệm dùng Vi-ét. Dạng 4. Toán tham số m với ứng dụng định lý Vi-ét. C. Bài tập rèn luyện
Các phép toán về căn thức - Dương Minh Hùng
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề căn thức, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Căn bậc hai số học. 2. Liên hệ giữa phép nhân với phép khai phương. 3. Liên hệ giữa phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản Dạng 1. Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Dạng 2. Tính giá trị biểu thức chứa căn. Dạng 3. Rút gọn biểu thức chứa căn. Dạng 4. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện