Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Điện Biên

Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Điện Biên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD ĐT Điện Biên Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD ĐT Điện Biên Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022-2023 của sở Giáo dục và Đào tạo Điện Biên. Kỳ thi sẽ diễn ra vào ngày ... tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chung) năm 2022-2023 sở GD&ĐT Điện Biên: 1. Một tổ công nhân dự định may 120 kiện khẩu trang để phục vụ công tác phòng chống dịch Covid-19. Nhờ cải tiến kỹ thuật, tổ công nhân mỗi ngày làm được thêm 5 kiện so với dự định. Vì vậy, tổ công nhân đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày tổ phải làm bao nhiêu kiện khẩu trang? 2. Cho đường tròn (O) và điểm P nằm ngoài đường tròn. Kẻ hai tiếp tuyến PM, PN với đường tròn (O) (M, N là các tiếp điểm). Một đường thẳng d đi qua P cắt đường tròn (O) tại hai điểm B, C (P, B, C không thẳng hàng). Câu hỏi yêu cầu chứng minh tứ giác PMON nội tiếp, chứng minh 2PN = PB + PC và tính độ dài đoạn BC khi PB = cm, PN = cm. 3. Cho tam giác ABC vuông tại A với các đường phân giác trong BM, CN. Yêu cầu chứng minh bất đẳng thức 3MC^2 + NA^2 >= 2NB^2 + MA*NA. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây – Hà Nội gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được tổ chức nhằm giúp các em học sinh lớp 9 muốn thi tuyển vào trường biết được cấu trúc đề, làm quen với kỳ thi để có sự chuẩn bị tốt nhất cho kỳ thi vượt cấp, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2017 - 2018 trường Archimedes Academy - Hà Nội lần 6
Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 gồm 5 bài toán tự luận, thí sinh làm bài trong khoảng thời gian 120 phút, nội dung các bài toán trong đề gồm các chủ đề sau: tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi được diễn ra vào ngày 21 tháng 4 năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán 2017 – 2018 : + Một ô tô đi từ A đến B cách nhau 260km, sau khi ô tô đi được 120km với vận tốc dự định thì tăng vận tốc thêm 10km/h trên quãng đường còn lại. Tính vận tốc dự định của ô tô, biết xe đến B sớm hơn thời gian dự định 20 phút. [ads] + Cho hệ phương trình x + 2y = 3, x + my = 1 (m là tham số). Tìm giá trị nguyên của m để hệ có nghiệm duy nhất (x, y) sao cho x, y là các số nguyên. + Cho parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (m là tham số) a) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú – Hà Nội được biên soạn nhằm giúp các em nắm được cấu trúc, độ khó của đề thi và làm quen với hình thức thi để có sự chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, không tính thời gian phát đề, đề thi có lời giải chi tiết và thang điểm.
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long - Hà Nội
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút( không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 25 tháng 02 năm 2018, đề thi thử có lời giải chi tiết . Trích dẫn đề thi thử tuyển sinh vào lớp 10 môn Toán : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô dự định đi từ A đến B trong một khoảng thời gian đã định. Nếu xe chạy với vận tốc 35 km/h thì đến B chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến B sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định đi lúc ban đầu. + Cho các số thực không âm x, y, z thỏa mãn: x ≤ 1, y ≤ 1, z ≤ 1 và x + y + z = 3/2. Tím giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x^2 + y^2 + z^2. [ads] + Cho đường tròn tâm O, bán kính R . Điểm A thuộc đường tròn, BC là một đường kính (A ≠ B, A ≠ C). Vẽ AH vuông góc với BC tại H. Gọi E, M lần lượt là trung điểm của AB, AH và P là giao điểm của OE với tiếp tuyến tại A của đường tròn (O, R). 1) Chứng minh rằng: AB^2 = BH.BC. 2) Chứng minh: PB là tiếp tuyến của đường tròn (O). 3) Chứng minh ba điểm P, M, C thẳng hàng. 4) Gọi Q là giao điểm của đường thẳng PA với tiếp tuyến tại C của đường tròn (O). Khi A thay đổi trên đường tròn (O), tìm giá trị nhỏ nhất của tổng OP + OQ.