Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Nho Quan Ninh Bình

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 - 2014 Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 - 2014 Sau đây là Đề học sinh giỏi huyện Toán lớp 8 năm 2013 - 2014 của phòng GD&ĐT Nho Quan - Ninh Bình, bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán lớp 8 năm 2013 - 2014 phòng GD&ĐT Nho Quan - Ninh Bình: 1. Chứng minh rằng số có dạng \(432An^{n}+6116\) chia hết cho 24 với mọi số tự nhiên n. 2. Đa thức \(f(x)\) khi chia cho \(x-1\) dư 4, khi chia cho \(2x-1\) dư 2\(3x\). Tìm phần dư khi chia \(f(x)\) cho \(2x^{2}+1\). 3. Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 3.1. Chứng minh KM vuông góc với DB. 3.2. Chứng minh rằng: \(KC \times KD = KH \times KB\). 3.3. Ký hiệu \(ABM, DCM, S, S'\) lần lượt là diện tích các tam giác ABM và DCM. 3.3.1. Chứng minh tổng \(ABM, DCM, S, S'\) không đổi. 3.3.2. Xác định vị trí của điểm M trên cạnh BC để \(ABM, DCM, S, S'\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Phúc Thọ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Phúc Thọ, huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Phúc Thọ – Nghệ An : + Cho a, b, c là các số nguyên thoả mãn 3 a b 2024c c. Chứng minh rằng: 333 abc chia hết cho 6. + Cho hình vuông ABCD trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. a) Chứng minh MNPQ hình vuông. b) Tìm vị trí của M, N, P, Q để diện tích tứ giác MNPQ đạt giá trị nhỏ nhất. Cho tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh CE = BF. + Cho các số nguyên dương a và b thoả mãn 2 2 S a b ab a b 3 2023 chia hết cho 5. Tìm số dư khi chia a – b cho 5.
Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 11 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Cho a, b, c là các số hữu tỷ thỏa mãn điều kiện ab + bc + ca = 1. Chứng minh rằng giá trị biểu thức Q = (a2 + 1)(b2 + 1)(c2 + 1) là bình phương của một số hữu tỷ. + Cho các số nguyên a, b, c thỏa mãn 2a + b, 2b + c, 2c + a đều là các số chính phương. Biết rằng một trong ba số chính phương trên chia hết cho 3. Chứng minh rằng: P = (a − b)3 + (b − c)3 + (c − a)3 chia hết cho 81. + Cho hình chữ nhật ABCD có BDC = 30°. Qua C vẽ đường thẳng vuông góc với BD, cắt BD ở E và cắt tia phân giác của ADB ở M. a. Chứng minh rằng tứ giác AMBD là hình thang cân. b. Gọi N là hình chiếu của M trên DA, K là hình chiếu của M trên AB. Chứng minh rằng ba điểm N, K, E thẳng hàng.
Đề HSG Toán 8 cấp trường năm 2023 - 2024 trường THCS Yên Phong - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi môn Toán 8 cấp trường năm học 2023 – 2024 trường THCS Yên Phong, tỉnh Bắc Ninh. Trích dẫn Đề HSG Toán 8 cấp trường năm 2023 – 2024 trường THCS Yên Phong – Bắc Ninh : + Xét phép toán a*b = ab + ba với mọi số nguyên dương a b. Tìm số nguyên dương x nếu 2*x = 100. + Chứng minh rằng với mọi số tự nhiên n khác 0 thì số n2 + n + 1 không phải là số chính phương. + Cho hình bình hành ABCD (góc A khác 120°). Vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó. a) Chứng minh tam giác CEF làm tam giác đều. b) Gọi M, I, K theo thứ tự là trung điểm của BD, AF, AE. Tính góc IMK. 2. Cho tam giác ABC vuông tại A đường cao AH. Chứng minh rằng AB + AC < AH + BC.