Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng

Nội dung Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Bản PDF - Nội dung bài viết Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng ĐăngMục lục tài liệu Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Tài liệu này được biên soạn bởi thầy giáo Phạm Hoàng Đăng và bao gồm 63 trang. Được tạo ra để giúp học sinh tổng ôn và vận dụng các chuyên đề cao cấp trong kỳ thi tốt nghiệp THPT quốc gia môn Toán. Mục tiêu của tài liệu là giúp học sinh chinh phục mức điểm cao từ 8 đến 10 trong đề thi. Mục lục tài liệu Chuyên đề 1. KHẢO SÁT HÀM SỐ A. Tìm tham số để hàm số đơn điệu trên K. Ví dụ, bài tập và đáp án. B. Giá trị lớn nhất, nhỏ nhất của hàm hợp. Ví dụ, bài tập và đáp án. C. Đơn điệu và cực trị của hàm số hợp. Bài tập mẫu, tương tự và đáp án. Chuyên đề 2. Phương trình mũ và lôgarít A. Dạng phương trình cô lập tham số. Ví dụ, bài tập và đáp án. B. Bài toán sử dụng hàm đặc trưng. Ví dụ, bài tập và đáp án. Chuyên đề 3. NGUYÊN HÀM - TÍCH PHÂN A. Tích phân hàm số cho bởi nhiều công thức. Ví dụ, bài tập và đáp án. B. Tích phân kết hợp bằng cách đổi biến & từng phần. Ví dụ, bài tập và đáp án. C. Tích phân hàm ẩn. Ví dụ, bài tập và đáp án. D. Diện tích hình phẳng và thể tích vật thể tròn xoay. Ví dụ, bài tập và đáp án. Chuyên đề 4. SỐ PHỨC A. Xác định các thuộc tính của số phức. Ví dụ, bài tập và đáp án. B. Cực trị của biểu thức chứa mô-đun số phức. Ví dụ, bài tập và đáp án. Chuyên đề 5. HÌNH HỌC KHÔNG GIAN A. Góc giữa đường thẳng và mặt phẳng. Ví dụ, bài tập và đáp án. B. Thể tích có chứa dữ liệu góc. Ví dụ, bài tập và đáp án. C. Khoảng cách từ điểm đến mặt phẳng. Ví dụ, bài tập và đáp án. D. Khoảng cách giữa hai đường thẳng chéo nhau. Ví dụ, bài tập và đáp án. E. Góc giữa hai mặt phẳng. Ví dụ, bài tập và đáp án. F. Thể tích khối đa diện liên quan góc, khoảng cách. Ví dụ, bài tập và đáp án. G. Bài toán cực trị (thực tế) trong nón trụ cầu. Ví dụ, bài tập và đáp án. Chuyên đề 6. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN A. Phương trình mặt phẳng, đường thẳng. Ví dụ, bài tập và đáp án. B. Cực trị hình học Oxyz. Ví dụ, bài tập và đáp án.

Nguồn: sytu.vn

Đọc Sách

Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Nội dung Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề Bản PDF - Nội dung bài viết Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Tài liệu đề tham khảo THPTQG 2020 môn Toán được biên soạn bởi nhóm Strong Team Toán VD – VDC, gồm 105 trang chứa các câu hỏi và bài toán minh họa trong đề thi. Tất cả các bài toán đều được giải chi tiết theo nhiều cách khác nhau, giúp học sinh hiểu rõ hơn về cách giải và rèn luyện kỹ năng ra đề. Tài liệu được chia thành hai phần tùy theo mức độ nhận thức: Phần 1: Mức độ Nhận biết – Thông hiểu từ trang 1 đến trang 68. Phần 2: Mức độ Vận dụng từ trang 69 đến trang 105. Ví dụ về các bài toán trong tài liệu: Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng cắt hình nón theo thiết diện là tam giác vuông diện tích bằng 4. Tìm thể tích của khối nón. Cho hàm số y = f(x) liên tục trên R, gọi S là tập hợp các giá trị nguyên m để phương trình f(sin x) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tính tổng các phần tử của S. Trong không gian Oxyz, mặt cầu (S) : x^2 + y^2 + z^2 − 4x − 2y + 2z − 3 = 0 và điểm M (4; 2; −2). Điểm M thuộc tâm, trên, trong hay ngoài mặt cầu (S)? Đề tham khảo này không chỉ giúp học sinh ôn tập hiệu quả mà còn phát triển khả năng giải quyết các dạng toán phổ biến trong đề thi THPT Quốc Gia môn Toán.
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Nội dung Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán Bản PDF - Nội dung bài viết Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán dựa trên nền tảng của chương trình học và kiến thức cơ bản trong sách giáo khoa. Đề thi được xây dựng với mục tiêu giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phân tích một cách logic và tổng hợp thông tin. Bên cạnh việc đánh giá kiến thức, đề thi cũng tập trung vào việc khuyến khích học sinh phát triển khả năng sáng tạo, tự tin và kiên nhẫn khi giải các bài toán khó. Các câu hỏi trong đề thi không chỉ yêu cầu kiến thức mà còn đòi hỏi học sinh có khả năng áp dụng kiến thức vào các tình huống thực tế và bài toán đa chiều. Với sự phong phú và đa dạng về nội dung, đề thi tham khảo môn Toán sẽ giúp học sinh tự tin và sẵn sàng tham gia kỳ thi quan trọng. Đồng thời, đề thi cũng là công cụ hữu ích giúp giáo viên đánh giá năng lực học sinh và điều chỉnh phương pháp dạy học phù hợp.
Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán
Nội dung Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Tài liệu được biên soạn bởi thầy giáo Nguyễn Minh Nhiên, bao gồm 39 trang trình bày lời giải chi tiết và phân tích sâu một số bài toán vận dụng cao trong đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020. Cụ thể, các bài toán được phân tích bao gồm: câu 38, câu 43, câu 46, câu 48, câu 49, và câu 50. Thông qua việc phân tích chi tiết các bài toán này, tài liệu giúp học sinh hiểu rõ hơn về cách tiếp cận và giải quyết các dạng toán vận dụng - vận dụng cao trong các bài toán thực tế.
Phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán
Nội dung Phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Giới thiệu tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Giới thiệu tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Sytu xin gửi đến quý thầy cô giáo và các em học sinh tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán, được biên soạn bởi thầy giáo Nguyễn Xuân Chung. Tài liệu này bao gồm 13 trang chi tiết, giúp các bạn học sinh hiểu rõ hơn về cấu trúc đề thi cũng như cách thức giải các câu hỏi trong đề. Đây thực sự là một công cụ hữu ích để các em chuẩn bị tốt cho kỳ thi sắp tới.