Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1)

Tài liệu gồm 188 trang, tổng hợp trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): hàm số lượng giác và phương trình lượng giác; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. Mục lục tài liệu trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): PHẦN I . TỰ LUẬN (Trang 1). BÀI 1 . HÀM SỐ LƯỢNG GIÁC (Trang 1). VẤN ĐỀ 01. Tìm tập xác định của hàm số (Trang 4). VẤN ĐỀ 02. Xét tính chẵn, lẻ của hàm số (Trang 6). VẤN ĐỀ 03. Xét tính tuần hoàn và tìm chu kỳ của hàm số (Trang 7). VẤN ĐỀ 04. Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số (Trang 9). VẤN ĐỀ 05: Vẽ đồ thị của một hàm số suy ra từ một đồ thị của hàm số đã biết (Trang 16). BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC (Trang 21). VẤN ĐỀ 01. Phương trình lượng giác cơ bản (Trang 21). VẤN ĐỀ 02. Một số phương pháp giải phương trình lượng giác (Trang 35). VẤN ĐỀ 03. Bài tập tổng hợp (Trang 45). BÀI 3 . BÀI TẬP TRONG ĐỀ ĐH – CĐ CÁC NĂM TRƯỚC (Trang 68). Dạng 1. Công thức lượng giác (Trang 68). Dạng 2. Đưa về phương trình tích (Trang 69). Dạng 3. Biến đổi tổng thành tích – tích thành tổng (Trang 73). Dạng 4. Phương trình bậc 2 – bậc 3 (Trang 75). Dạng 5. Phương trình bậc nhất theo sinx, cosx (Trang 80). Dạng 6. Phương trình đẳng cấp (Trang 83). Dạng 7. Phương trình đối xứng (Trang 84). Dạng 8. Phương pháp hạ bậc (Trang 84). Dạng 9. Công thức nhân ba (Trang 89). Dạng 10. Phương trình có chứa giá trị tuyện đối. Phương trình có chứa căn thức (Trang 87). Dạng 11. Phương trình có chứa tham số (Trang 89). PHẦN II . TRẮC NGHIỆM (Trang 90). A – ĐỀ BÀI (Trang 90). B – BẢNG ÐÁP ÁN (Trang 124). C – HƯỚNG DẪN GIẢI (Trang 125). Trong mỗi dạng bài, tài liệu tóm tắt lý thuyết SGK, hướng dẫn phương pháp giải toán, kèm theo các ví dụ minh họa từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề lượng giác - Trần Văn Hạo
Sách scan chuyên đề Lượng giác luyện thi vào đại học do nhà xuất bản giáo dục Việt Nam phát hành. Sách gồm 2 phần: + Phần 1. Kiến thức cơ bản và ví dụ áp dụng + Phần 2. Hướng dẫn giải và câu hỏi trắc nghiệm ôn tập
Phương pháp giải phương trình lượng giác - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 27 trang, với nội dung gồm: + Vấn đề 1. Phương trình lượng giác: Tóm tắt cách giải 5 dạng toán và 53 bài toán chọn lọc có lời giải + Vấn đề 2. Giải phương trình lượng giác trên một miền + Vấn đề 3. Điều kiện có nghiệm của phương trình lượng giác + Vấn đề 4. Bài toán về tam giác
Trắc nghiệm lượng giác có lời giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 145 trang tổng hợp câu hỏi và bài tập trắc nghiệm lượng giác có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở Giáo dục – Đào tạo trên cả nước, các câu hỏi trong tài liệu được chia thành 4 mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao. Tài liệu rất hữu ích cho các em học sinh lớp 11 và 12 trong quá trình ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019.
Phân dạng và giải chi tiết 99 câu trắc nghiệm chuyên đề lượng giác - Nguyễn Nhanh Tiến
Tài liêu gồm 24 trang phân dạng và giải chi tiết 99 bài toán trắc nghiệm chọn lọc chủ đề hàm số lượng giác và phương trình lượng giác chương trình Đại số và Giải tích 11. Các dạng toán trong tài liệu gồm có: 1. Tập xác định của hàm số lượng giác • y = f(x)/g(x) có nghĩa khi và chỉ khi g(x) ≠ 0 • y = √f(x) có nghĩa khi và chỉ khi f(x) ≥ 0 • y = f(x)/√g(x) có nghĩa khi và chỉ khi g(x) > 0 2. GTLN và GTNN Của Hàm Số Lượng Giác • −1 ≤ sinx ≤ 1; 0 ≤ (sinx)^2 ≤ 1 • −1 ≤ cos x ≤ 1; 0 ≤ (cosx)^2 ≤ 1 • |tanx+cot x| ≥ 2 • Hàm số dạng y = a(sinx)^2 + bsinx + c (tương tự cosx, tanx …) tìm max min theo hàm bậc 2 (lập bảng biến thiên) • Dùng phương trình asinx + bcosx = c có nghiệm x ∈ R khi và chỉ khi a^2 + b^2 ≥ c^2 • Với hàm số y = asinx + bcosx ta có kết quả: ymax = √(a^2 + b^2), ymin = −√(a^2 + b^2) • Hàm số có dạng: y = (a1.sinx + b1.cosx + c1)/(a2.sinx + b2.cos x + c2) ta tìm tập xác định. Đưa về phương trình dạng: asinx + bcosx = c [ads] 3. Tính chẵn lẻ Của Hàm Số Lượng Giác Để xác định tính chẵn lẻ của hàm số lượng giác ta thực hiện theo sau: + Bước 1: Tìm tập xác định D của hàm số, khi đó: • Nếu D là tập đối xứng (Tức ∀x ∈ D ⇒ −x ∈ D), ta thực hiện tiếp bước 2 • Nếu D không là tập đối xứng (Tức ∃x ∈ D mà −x ∈/ D), ta kết luận hàm số không chẵn không lẻ + Bước 2: Xác định f(−x) khi đó: • Nếu f(−x) = f(x) kết luận là hàm số chẵn • Nếu f(−x) = −f(x) kết luận là hàm số lẻ • Ngoài ra kết luận là hàm số không chẵn cũng không lẻ 4. Tính Tuần Hoàn Của Hàm Số Lượng Giác • Hàm số y = sin(ax + b) và y = cos(ax + b) với a ≠ 0 tuần hoàn với chu kì: 2π/|a| • Hàm số y = tan(ax + b) và y = cot(ax + b) với a 6= 0 tuần hoàn với chu kì: π/|a| • Hàm số f(x), g(x) tuần hoàn trên tập D có các chu kì lần lượt a và b với a, b ∈ Q. Khi đó F(x) = f(x) + g(x), G(x) = f(x)g(x) cũng tuần hoàn trên D • Hàm số F(x) = m. f(x) + n.g(x) tuần hoàn với chu kì T là BCNN của a,b 5. Phương Trình Lượng Giác Cơ Bản u, v là các biểu thức của x, x là số đo của góc lượng giác: • sinu = sinv ⇔ u = v + 2kπ hoặc x = π − v + k2π • cosu = cos v ⇔ u = ±v + k2π • tanu = tanv ⇔ u = v + kπ • cotu = cot v ⇔ u = v + kπ• Muốn tìm số điểm (vị trí) biểu diễn của x lên đường tròn lượng giác thì ta đưa về dạng x = α +k2π/n. Kết luận số điểm là n, với k, l ∈ Z