Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ôn luyện Toán 9 theo chủ đề (tập 2)

Tài liệu gồm 199 trang, bao gồm tóm tắt lý thuyết, bài tập và các dạng toán, giúp học sinh lớp 9 ôn luyện Toán 9 theo chủ đề (tập 2). Mục lục : CHỦ ĐỀ 1. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 1. + Vấn đề 1. Phương trình bậc nhất hai ẩn 1. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 5. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 9. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 13. + Vấn đề 5. Hệ phương trình bậc nhất hai ẩn chứa tham số 17. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 20. + Vấn đề 7. Giải bài toán bằng cách lập hệ phương trình (phần 2) 23. Ôn tập chủ đề 1 (phần 1) 26. Ôn tập chủ đề 1 (phần 2) 29. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 32. + Vấn đề 1. Hàm số y = ax2 (a khác 0) và đồ thị (phần 1) 32. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 36. + Vấn đề 3. Công thức nghiệm 38. + Vấn đề 4. Công thức nghiệm 42. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 46. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 50. + Vấn đề 7. Phương trình quy về phương trình bậc hai 54. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 58. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 62. + Vấn đề 10. Bài toán về đường thẳng và parabol 66. Ôn tập chủ đề 2 69. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 73. + Vấn đề 1. Góc ở tâm. Số đo cung 73. + Vấn đề 2. Liên hệ giữa cung và dây 75. + Vấn đề 3. Góc nội tiếp (phần 1) 77. + Vấn đề 4. Góc nội tiếp (phần 2) 78. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 80. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây cung (phần 2) 81. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 1) 84. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 85. + Vấn đề 9. Cung chứa góc 88. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 90. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 92. + Vấn đề 12. Độ dài đường tròn, cung tròn 94. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 98. Ôn tập theo chủ đề 3 101. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CẦU 104. + Vấn đề 1. Diện tích xung quanh và thể tích của hình trụ 104. + Vấn đề 2. Diện tích xung quanh và thể tích hình nón, hình nón cụt 106. + Vấn đề 3. Diện tích và thể tích mặt cầu 108. Ôn tập chủ đề 4 111. HƯỚNG DẪN GỢI Ý ĐÁP ÁN 113. CHỦ ĐỀ 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 113. + Vấn đề 1. Phương trình bậc nhất hai ẩn 113. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 116. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 118. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 120. + Vấn đề 5. Hệ phương trình bậc nhất 122. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 125. Ôn tập chủ đề 1 (phần 1) 128. Ôn tập chủ đề 1 (phần 2) 131. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 133. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 135. + Vấn đề 3. Công thức nghiệm của phương trình bậc hai (phần 1) 138. + Vấn đề 4. Công thức nghiệm của phương trình bậc hai (phần 2) 140. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 143. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 147. + Vấn đề 7. Phương trình quy về phương trình bậc hai 149. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 151. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 154. + Vấn đề 10. Bài toán về đường thẳng và parabol 156. Ôn tập chủ đề 2 158. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 160. + Vấn đề 1. Góc ở tâm. Số đo cung 160. + Vấn đề 2. Liên hệ giữa cung và dây 161. + Vấn đề 3. Góc nội tiếp (phần 1) 163. + Vấn đề 4. Góc nội tiếp (phần 2) 165. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 167. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây (phần 2) 168. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài 170. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 172. + Vấn đề 9. Cung chứa góc 174. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 175. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 177. + Vấn đề 12. Độ dài đường tròn, cung tròn 180. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 183. Ôn tập chủ đề 3 186. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CÂU 191. + Vấn đề 1. Diện tích xung quanh và thể tích hình trụ 191. + Vấn đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt 193. + Vấn đề 3. Diện tích và thể tích của mặt cầu 194. Ôn tập chủ đề 4 196.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu này bao gồm 19 trang với các kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề giữa phép nhân và phép khai phương trong môn Toán lớp 9. Mỗi phần bài tập đều có đáp án và lời giải chi tiết để học sinh có thể tự kiểm tra và tự học. A. Tóm tắt lý thuyết: Định lý: Phép nhân của hai số a và b (a, b > 0) có thể được biểu diễn dưới dạng phép khai phương: ab = a √b. Quy tắc khai phương một tích: Khi nhân hai số a và b (a, b ≥ 0) ta có: √(ab) = √a * √b. Quy tắc nhân các căn bậc hai: Khi nhân hai biểu thức A và B (A, B ≥ 0) ta có: √A * √B = √(AB). B. Bài tập và các dạng toán: Dạng 1: Tính giá trị của biểu thức sử dụng công thức khai phương một tích. Dạng 2: Rút gọn biểu thức bằng cách áp dụng công thức khai phương của một tích. Dạng 3: Giải phương trình chứa căn thức, cần chú ý đến điều kiện đi kèm. Dạng 4: Chứng minh đẳng thức bằng cách áp dụng bất đẳng thức Côsi cho các số không âm. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh tự luyện tập. File Word cũng được cung cấp để giáo viên dễ dàng sử dụng và chỉnh sửa khi cần thiết. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức và kỹ năng để áp dụng phép nhân và phép khai phương hiệu quả trong việc giải các bài toán và ứng dụng trong thực tế.
Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.
Tóm tắt lý thuyết và một số dạng toán đường tròn Nguyễn Ngọc Dũng
Nội dung Tóm tắt lý thuyết và một số dạng toán đường tròn Nguyễn Ngọc Dũng Bản PDF Nội dung của tài liệu được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tóm tắt lý thuyết và một số dạng toán đường tròn, nhằm giúp học sinh lớp 9 hiểu tốt chương trình Hình học 9 chương 2 từ sách giáo khoa Toán lớp 9 tập 1. Tài liệu gồm 17 trang, chia thành các phần như sau:1. Sự xác định đường tròn và tính chất đối xứng của đường tròn: Phần này giúp học sinh hiểu cách chứng minh các điểm cùng thuộc một đường tròn, cách chứng minh các điểm đã cho cách đều một điểm, và tính chất của tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.2. Đường kính và dây của đường tròn, liên hệ giữa dây và khoảng cách từ tâm đến dây: Phần này giúp học sinh hiểu cách chứng minh hai đoạn thẳng bằng nhau, hai dây bằng nhau, và mối quan hệ giữa các đoạn thẳng trong đường tròn. 3. Vị trí tương đối của đường tròn và đường thẳng, tiếp tuyến của đường tròn: Phần này giúp học sinh hiểu cách tính độ dài một đoạn tiếp tuyến, cách chứng minh một đường thẳng là tiếp tuyến của đường tròn, và tính chất của hai tiếp tuyến cắt nhau.4. Vị trí tương đối của hai đường tròn: Phần này giúp học sinh hiểu vị trí của hai đường tròn đối với nhau và các tính chất liên quan.Tài liệu này đem đến cho học sinh những kiến thức cơ bản và quan trọng về đường tròn, giúp họ hiểu rõ hơn về chương trình Hình học lớp 9 và có thể áp dụng vào việc giải các bài toán liên quan. Nhờ cách trình bày cụ thể và dễ hiểu, tài liệu sẽ giúp học sinh nắm vững kiến thức một cách hiệu quả.
Chuyên đề rút gọn biểu thức và các bài toán liên quan Trần Đình Cư
Nội dung Chuyên đề rút gọn biểu thức và các bài toán liên quan Trần Đình Cư Bản PDF - Nội dung bài viết Tài liệu Chuyên đề rút gọn biểu thức và các bài toán liên quan của thầy Trần Đình Cư Tài liệu Chuyên đề rút gọn biểu thức và các bài toán liên quan của thầy Trần Đình Cư Tài liệu này bao gồm 32 trang, được biên soạn bởi thầy giáo Trần Đình Cư, cung cấp kiến thức cần nắm về phân loại và phương pháp giải bài tập chuyên đề rút gọn biểu thức và các bài toán liên quan. Tài liệu cũng đi kèm đáp án và lời giải chi tiết, giúp học sinh lớp 9 tham khảo khi học chương trình. Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức và áp dụng vào việc giải các bài tập dạng này một cách hiệu quả.