Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2022 - 2023 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Thuận Thành 1, tỉnh Bắc Ninh; đề thi hình thức tự luận với 07 bài toán, thời gian làm bài: 120 phút (không kể thời gian giao đề). Trích dẫn Đề thi HSG Toán 11 năm 2022 – 2023 trường THPT Thuận Thành 1 – Bắc Ninh : + Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15, …, 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau + Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. + Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. + Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100. Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. + Trong toán học và nghệ thuật, hai đại lượng được gọi là có tỷ lệ vàng nếu tỷ số giữa tổng các đại lượng đó với đại lượng lớn hơn bằng tỷ số giữa đại lượng lớn hơn với đại lượng nhỏ hơn. Vậy tỷ lệ vàng được biểu diễn như sau. 1) Hãy tính tỷ lệ vàng ϕ đó. 2) Cho một đường tròn. Trên đường tròn đó lấy năm điểm ABCDE sao cho ABCDE là ngũ giác đều. Nối các đỉnh của đa giác đó tạo thành hình ngôi sao năm cánh (như hình vẽ).Gọi giao điểm của BE với AC và AD lần lượt là I và K. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AD // BC, AB = BC = a, AD = 2a, tam giác SAD vuông cân tại S và SB a 3. Gọi M là trung điểm của SA, G là trọng tâm của tam giác SCD, H là giao điểm của BG và mặt phẳng (SAC). Chứng minh rằng BM // (SCD) và tính tỉ số HB HG. Cho tứ diện đều ABCD cạnh a. Hai điểm M N chạy tương ứng trên các đoạn AB và CD sao cho BM DN. Tìm giá trị lớn nhất, nhỏ nhất của MN.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Quảng Ngãi
Chiều thứ Năm ngày 08 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 11 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề thi chọn HSG tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Quảng Bình (Vòng 1)
Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 11 năm học 2020 – 2021 và chọn đội dự tuyển dự thi chọn HSG Quốc gia môn Toán năm học 2021 – 2022 vòng 1. Đề thi chọn HSG tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Quảng Bình (Vòng 1) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi chọn HSG Toán 11 năm 2020 - 2021 sở GDĐT Vĩnh Phúc
Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi chọn HSG Toán 11 năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề tự luận, đề gồm 02 trang với 07 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I(1;4), đỉnh A nằm trên đường thẳng có phương trình 2x + y – 1 = 0, đỉnh C nằm trên đường thẳng có phương trình x – y + 2 = 0. Tìm tọa độ các đỉnh của hình vuông đã cho. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tất cả các cạnh bên đều bằng a. Gọi điểm M thuộc cạnh SD sao cho SD = 3SM, điểm G là trọng tâm tam giác BCD. a) Chứng minh rằng MG song song với mp(SBC). b) Gọi (α) là mặt phẳng chứa MG và song với CD. Xác định và tính diện tích thiết diện của hình chóp với mp (α). c) Xác định điểm P thuộc MA và điểm Q thuộc BD sao cho PQ song song với SC. Tính PQ theo a. + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau và ba chữ số chẵn khác nhau, mà mỗi chữ số chẵn có mặt đúng hai lần.