Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2021 2022 trường THPT Kim Liên Hà Nội

Nội dung Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2021 2022 trường THPT Kim Liên Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra học kỳ 1 Toán lớp 10 năm 2021 – 2022 trường THPT Kim Liên – Hà Nội; đề thi gồm 25 câu trắc nghiệm (05 điểm) và 03 câu tự luận (05 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án. Trích dẫn đề kiểm tra học kỳ 1 Toán lớp 10 năm 2021 – 2022 trường THPT Kim Liên – Hà Nội : + Cho hình chữ nhật ABCD có cạnh AB a AD a 2. Gọi G là trọng tâm tam giác ABD. Gọi N là điểm thuộc cạnh DC sao cho 1 6 DN DC a) Chứng minh rằng 2 3 GC AC Phân tích vectơ GN vectơ theo hai vectơ AB, AD.  b) Chứng minh rằng AC GN c) Tìm tập hợp điểm I sao cho 2 2 2 2 2 IA IB ID IC a 3 10. + Cho hàm số 2 y x 4x 2 có đồ thị là (P). a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số trên. b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn 1 4. c) Tìm m để đường thẳng (d): 2 y x m cắt đồ thị (P) tại hai điểm phân biệt A B sao cho AB 4 5. + Cho mệnh đề 2 P x x x x 2 1 0. Mệnh đề phủ định của mệnh đề P x là? + Cho hình chữ nhật ABCD biết AB a 4 và AD a 3. Gọi O là giao điểm của hai đường chéo AC và BD. Tính độ dài AB OD. + Cho parabol 2 2 P 2 3 4 3 y x mx m m (m là tham số) có đỉnh I. Gọi A, B là hai điểm thuộc Ox sao cho AB 2022. Khi đó IAB có diện tích nhỏ nhất bằng?

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Phú Lâm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Trong mặt phẳng (Oxy) cho ba điểm A(-1;2), B(-1;-1), C(4;-1). a) Chứng minh rằng tam giác ABC vuông tại B. b) Tính diện tích của tam giác ABC. c) Tìm tọa độ trọng tâm G của tam giác ABC. + Cho phương trình mx^2 – (2m + 1)x + m – 4 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 sao cho x1^2 + x2^2 = 15. + Cho hình vuông ABCD có cạnh bằng 2a. Hãy tính AC.AD.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Giải các phương trình và hệ phương trình sau. + Tìm giá trị tham số m sao cho phương trình 9m^2.x – 1 = x – 3m có nghiệm tùy ý. + Tìm giá trị nhỏ nhất của hàm số y = 9x + (3x + 1)/(x – 1) với x > 1.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tân Phong - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tân Phong, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tân Phong – TP HCM : + Cho ∆ABC có trung tuyến CM. Trên đường thẳng AC lấy điểm N sao cho NA = 2NC. Gọi K là trung điểm MN. Phân tích vecto AK theo AB, AC. + Trong mặt phẳng Oxy cho E(-2;-3); F(3;7); G(0;3); H(-4;-5), chứng minh rằng hai đường thẳng EF và GH song song với nhau. + Trong mặt phẳng Oxy, cho tam giác ∆ABC có A(−1;2); B(3;7); C(0;3). Tìm D sao cho ABCD là hình bình hành.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lương Thế Vinh - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lương Thế Vinh, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lương Thế Vinh – TP HCM : + Một người ném một quả bóng với quỹ đạo là một phần đường Parabol (P): y = ax2 + bx + c (a khác 0). Chọn hệ trục tọa độ Oxy sao cho gốc tọa độ O tại vị trí chân người ném bóng, trục Ox nằm trên mặt đất (x, y được tính bằng mét) (xem hình bên). Quả bóng được ném lên từ độ cao 2,5 mét so với mặt đất, Parabol có đỉnh I(2;9/2). Hỏi vị trí bóng chạm mặt đất cách chân người đó bao nhiêu mét? + Cho tam giác ABC có AB = 5; AC = 8, góc A = 60 độ. a) Tính độ dài cạnh BC, trung tuyến AM. b) Trên cạnh BC lấy điểm N sao cho BN = 3, tính độ dài đoạn thẳng AN. + Giải các phương trình và hệ phương trình sau.