Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Đồng Nai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Đồng Nai : + Một đội xe được giao nhiệm vụ vận chuyển 150 tấn hàng tiếp tế đến một khu vực có người đang bị cách ly do dịch Covid-19. Theo kế hoạch phải hoàn thành trong một thời gian nhất định và biết rằng số tấn hàng mỗi ngày đội xe đó chở là như nhau. Vì tình hình cấp bách nên mỗi ngày đội xe đó đã chở nhiều hơn kế hoạch ban đầu là 5 tấn hàng, do đó đội xe đã hoàn thành nhiệm vụ được giao sớm hơn 1 ngày. Hỏi theo kế hoạch ban đầu đội xe phải hoàn thành nhiệm vụ trong bao nhiêu ngày? + Tính diện tích xung quanh của một hình trụ có bán kính đáy 2 cm và chiều cao gấp 3 lần bán kính đáy. + Từ điểm M nằm ngoài đường tròn (O;R) kẻ hai tiếp tuyến MA và MB với đường tròn (A và B là hai tiếp điểm). 1) Chứng minh tứ giác MACB nội tiếp. 2) Vẽ tia M nằm giữa hai tia MA và MO. Tia M cắt đường tròn (O;R) tại điểm C và điểm D (điểm C nằm giữa hai điểm M và D). Chứng minh hai tam giác MAC và MDA đồng dạng, rồi từ đó suy ra MC/MD = (AC/AD)2. 3) Gọi H là giao điểm của OM và AB. Kẻ DK vuông góc với AB tại K, OP vuông góc với CD tại P, OQ vuông góc với HD tại Q. Chứng minh tứ giác HKPQ là hình thang cân.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Yên; đề thi hình thức tự luận, gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Phú Yên : + Cho đoạn thẳng AB với M là trung điểm. Trên đường trung trực Mt của đoạn thẳng AB lấy điểm I bất kì. Vẽ tia Ax sao cho AI là phân giác góc BAx. Đường thẳng BI cắt Ax tại N. Gọi C là điểm đối xứng của A qua N, H là hình chiếu vuông góc của C lên AB. a) Chứng minh rằng tam giác NHB cân. b) Chứng minh đẳng thức: BH2 = HI.BN. c) Khi điểm I di chuyển trên đường trung trực Mt đến vị trí làm cho tam giác ABC vuông tại C, hãy tính tỉ số AB/AC. + Cho phương trình ax2 + bx + c = 0 (a ≠ 0) với a, b, c là số thực thỏa 2a – b + c = 0. Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt và 2 nghiệm không thể đều dương. + Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB, H là hình chiếu vuông góc của A lên đường thẳng DC. Đường thẳng qua C vuông góc với BC cắt đường thẳng AB tại E. Gọi I là hình chiếu vuông góc của E lên đường thẳng DC. a) Chứng minh BH vuông góc với AI. b) Đường thẳng qua B vuông góc với BH cắt đường thẳng DC tại K. Chứng minh tứ giác BCEK nội tiếp.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 cấp THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Điện Biên : + Một ô tô và một xe máy khởi hành cùng một lúc để đi từ A đến B với vận tốc mỗi xe không đổi trên toàn bộ quãng đường AB. Biết quãng đường AB dài 240 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 20 km/h nên ô tô đến B sớm hơn xe máy 2 giờ. Tính vận tốc mỗi xe. + Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = x2 và đường thẳng (d): y = −2x + m (với m là tham số). Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thoả mãn: y1 + y2 + 3x1x2 = 1. + Cho đường tròn (O;R), đường kính AB. Kẻ Ax là tiếp tuyến của đường tròn tâm O. Trên tia Ax lấy điểm C (C khác A), CB cắt đường tròn tại điểm D. Gọi I là giao điểm của OC và AD. Kẻ AH vuông góc với OC tại điểm H, AH cắt BC tại điểm M. a) Chứng minh tứ giác DMHI nội tiếp đường tròn. b) Chứng minh OH.OC = R2 và tam giác OHB đồng dạng với tam giác OBC. c) Chứng minh MD/MB = HD/HB.
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Hệ thống cáp treo núi Bà Đen tỉnh Tây Ninh gồm hai tuyến Vân Sơn và Chùa Hang có tổng cộng 191 cabin, mỗi cabin có sức chứa 10 người. Nếu tất cả các cabin của hai tuyến đều chứa đủ số người theo qui định thì số người ở tuyến Vân Sơn nhiều hơn số người ở tuyến Chùa Hang là 350 người. Tính số cabin của mỗi tuyến. + Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A vẽ các tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Gọi D là trung điểm của đoạn thẳng AC, BD cắt (O) tại E (khác B) và BC cắt OA tại F. Chứng minh bốn điểm C, D, E, F cùng thuộc một đường tròn. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là trung điểm của HB và HC. Kẻ MK vuông góc với AN tại K, MK cắt AH tại I. Tính AH/AI.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào chiều thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hải Dương : + Một đội công nhân phải trồng 96 cây xanh. Đội dự định chia đều số cây cho mỗi công nhân nhưng khi chuẩn bị trồng thì có 4 công nhân được điều đi làm việc khác nên mỗi công nhân còn lại phải trồng thêm 4 cây. Hỏi lúc đầu đội công nhân có bao nhiêu người? + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x + m. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1 + 2×2 = m + 3. + Cho tam giác ABC có ba góc nhọn và các đường cao AF, BD, CE cắt nhau tại H. 1. Chứng minh rằng: DAH = DEH. 2. Gọi O và M lần lượt là trung điểm của BC và AH. Chứng minh rằng: tứ giác MDOE nội tiếp. 3. Gọi K là giao điểm của AH và DE. Chứng minh rằng: AH2 = 2MK(AF + HF).