Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội

Nội dung Đề học sinh năng khiếu lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề học sinh năng khiếu Toán lớp 8 năm 2021-2022 phòng GD&ĐT Thanh Trì Hà Nội Đề học sinh năng khiếu Toán lớp 8 năm 2021-2022 phòng GD&ĐT Thanh Trì Hà Nội Xin chào quý thầy cô giáo và các em học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến mọi người đề kiểm tra học sinh năng khiếu môn Toán lớp 8 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội. Kỳ thi đang diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn một số câu hỏi trong đề thi: Cho tam giác ABC có độ dài các cạnh là a, b, c và chu vi là 2p. Hãy chứng minh một điều gì đó? Đoạn thẳng AB và điểm M nằm trên đoạn thẳng đó. Xây hai hình vuông AMCD và BMEF trên cùng một nửa mặt phẳng bờ AB. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. Hãy chứng minh một số khẳng định liên quan đến ABC. Sử dụng các số 1, 2, 3, 4, 5, 6, 7, 8 để đánh số đỉnh của một hình lập phương và tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau. Đề thi này không chỉ giúp các em học sinh thể hiện năng khiếu Toán mà còn giúp họ phát triển logic, suy luận và khả năng giải quyết vấn đề. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho hình vuông ABCD. Qua A vẽ hai đưởng thẳng d và d’ vuông góc với nhau. Biết d cắt BC và CD lần lượt tại R và S, d’ cắt BC và CD ở P và Q. a) Chứng minh các tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H. Gọi M và N lật lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh MN là đường trung trực của AC. + Chứng minh rằng trong một hình thang cân, bình phương của đường chéo bằng bình phương của cạnh bên cộng với tích của hai đáy. + Tìm giá trị nhỏ nhất của biểu thức: M.
Đề thi HSG Toán 8 năm 2016 - 2017 phòng GDĐT Phù Ninh - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ : + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). 1. Chứng minh tam giác AMN vuông cân và AN2 = NC.NP. 2. Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD. 3. Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM2 + 1AQ2 không đổi khi điểm M thay đổi trên cạnh BC. + Tỉ số các cạnh bé nhất của hai tam giác đồng dạng bằng 2/5. Tính chu vi P và P’ của hai tam giác đó biết P’ – P = 18 cm. + Cho tam giác ABC có độ dài ba cạnh: AB = 20 cm, AC = 34 cm, BC = 42 cm. Diện tích của tam giác đó là?
Đề thi Olympic Toán 8 năm 2016 - 2017 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic Toán 8 năm 2016 – 2017 phòng GD&ĐT Thanh Oai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 8 năm 2016 – 2017 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho tam giác ABC. Gọi P là giao điểm của ba đường phân giác trong của tam giác đó. Đường thẳng qua P và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N. Chứng minh. + Chứng minh rằng giữa ba số nguyên tố lớn hơn 3 luôn tìm được hai số có tổng hoặc hiệu chia hết cho 12. + Tìm số tự nhiên n để biểu thức sau là số nguyên tố 12n2 – 5n – 25.
Đề thi kiến thức Toán 8 năm 2016 - 2017 phòng GDĐT Quận 1 - TP HCM
Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán 8 năm học 2016 – 2017. Đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM có đáp án và lời giải chi tiết. Trích dẫn đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM : + Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Tìm số học sinh ban đầu của mỗi lớp. + Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: HED ~ HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M để x2 + y2 + z2 đạt giá trị nhỏ nhất.