Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Cần Thơ

Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ là bài thi quan trọng để học sinh có cơ hội vào học tập ở trường phổ thông trung học. Đề thi gồm 6 bài toán tự luận có lời giải chi tiết, giúp học sinh ôn tập và kiểm tra kiến thức của mình. Một số bài toán trong đề thi: - Đề thi có bài toán về việc tổ chức thi đấu môn bóng bàn đánh đôi nam nữ trong lớp học. Học sinh cần phải tính toán để tìm ra số học sinh trong lớp 9A. - Bài toán về tam giác ABC và đường tròn (O) cắt các cạnh của tam giác, học sinh cần chứng minh và tính toán các đại lượng liên quan. Với những bài toán phức tạp như vậy, học sinh cần phải có kiến thức vững chắc và khả năng giải quyết vấn đề một cách logic. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng toán học mà còn phản ánh khả năng tư duy logic và khả năng giải quyết vấn đề của học sinh. Chắc chắn rằng việc ôn tập và giải đề thi này sẽ giúp học sinh tự tin hơn trong kỳ thi tuyển sinh và có cơ hội đậu vào trường phổ thông trung học mong muốn.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 - 2023 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác ABC vuông cân tại A có AB = AC = 4cm. Kẻ đường cao AH của tam giác ABC và vẽ cung tròn (A;AH) cắt AB, AC lần lượt tại D, E (hình vẽ bên). Tính diện tích phần tô đậm trong hình vẽ bên. + Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm P, Q sao cho P nằm giữa A và Q, dây cung PQ không đi qua tâm O. Gọi I là trung điểm của đoạn PQ, J là giao điểm của hai đường thẳng AQ và MN. Chứng minh rằng: a) Năm điểm A, M, O, I, N cùng nằm trên một đường tròn và JIM = JIN. b) Tam giác AMP đồng dạng với tam giác AQM và AP.AQ = AI.AJ. + Cho x, y, z là các số thực dương thay đổi. Tìm giá trị lớn nhất của biểu thức P = (x + y – z)(y + z – x)(z + x – y) – xyz.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi mã đề 482 gồm 20 câu trắc nghiệm (04 điểm – 30 phút) và 04 câu tự luận (06 điểm – 06 phút); đề thi có đáp án và lời giải chi tiết (hướng dẫn được thực hiện bởi tác giả DUC PV). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bắc Ninh : + Một người đi xe đạp từ A đến B cách nhau 15km. Khi từ B về A người đó tăng vận tốc thêm 3km/h. Vì vậy, thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho đường tròn (O; R) và dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt đường tròn (O; R) tại điểm K (K khác B). a) Chứng minh AKCE là tứ giác nội tiếp. b) Chứng minh BM2 = BK.BC. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI. Chứng minh C cách đều ba cạnh của 4DEK. + Chứng minh rằng nếu tất cả các cạnh của một tam giác nhỏ hơn 2 thì diện tích của tam giác đó nhỏ hơn √3.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16/06/2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Quảng Nam : + Xác định tất cả các giá trị của tham số m để phương trình x2 – 2mx + m2 + m – 3 = 0 có hai nghiệm phân biệt x1 và x2 sao cho |x1 – x2| = m. + Cho đường tròn (O) có đường kính AB. Trên đường tròn (O) lấy điểm E (khác B) sao cho tiếp tuyến của (O) tại E cắt tia AB tại điểm C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại C, D là giao điểm của đường thẳng AE và đường thẳng d, F là giao điểm thứ hai của đường thẳng BD và đường tròn (O). a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Chứng minh EF song song với đường thẳng d. c) Gọi I là giao điểm của BE và CF, H là giao điểm của EF và AB. Chứng minh BC.IF = 2IC.BH. + Cho ba số thực dương a, b, c thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của biểu thức Q.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào chiều Chủ Nhật ngày 12 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Cho hình vuông ABCD. Trên các cạnh BC và CD lần lượt lấy các điểm M và N sao cho MAN = 45°. a) Chứng minh MN tiếp xúc với đường tròn tâm A bán kính AB. b) Kẻ MP song song với AN (P thuộc đoạn AB) và kẻ NQ song song với AM (Q thuộc đoạn AD). Chứng minh AP = AQ. + Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường thẳng BC tại I. Đường thẳng qua A vuông góc với IH tại K và cắt BC tại M. a) Chứng minh tứ giác IFKC nội tiếp b) Chứng minh M là trung điểm của BC. + Số nguyên dương n được gọi là “số tốt” nếu n + 1 và 8n + 1 đều là các số chính phương. a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số. b) Tìm các số nguyên k thỏa mãn |k| =< 10 và 4n + k là hợp số với mọi n là “số tốt”.