Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quỳnh Lưu Nghệ An

Nội dung Đề thi HSG Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF Đề thi HSG Olympic Toán lớp 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An Đề thi HSG Olympic Toán lớp 8 năm 2020 – 2021 của phòng GD&ĐT Quỳnh Lưu – Nghệ An bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút. Dưới đây là một số bài toán trích dẫn từ đề thi này: Bài 1: Tìm cặp số nguyên x, y thỏa mãn. Bài 2: Hai bạn Lan và Hoa vào cửa hàng sách. Lan mua một số quyển vở, còn Hoa không những mua gấp đôi số quyển vở của Lan mua mà còn nhiều hơn một quyển nữa. Hãy tính số quyển vở mỗi bạn mua. Biết rằng số quyển vở Lan mua là một số nguyên tố, số quyển vở Hoa mua là lập phương của một số tự nhiên. Bài 3: Một tam giác có độ dài ba cạnh là a, b, c và chu vi là 2. Chứng minh rằng: a2 + b2 + c2 + 2abc < 2. Bạn hãy xem xét và giải quyết các bài toán trên một cách cẩn thận và chính xác để có thể đạt kết quả tốt nhất trong đề thi này.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. a. Chứng minh: KF // EH. b. Chứng minh: các đường thẳng EK, HF, BD đồng quy. c. Chứng minh: SMKAE = SMHCF. + Cho biểu thức: A. a. Rút gọn A. b. Tìm giá trị nguyên của x để A có giá trị nguyên. + Chứng minh rằng: n3 + 2012n chia hết cho 48 với mọi n chẵn.
Đề thi HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Hoài Nhơn - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định, kỳ thi được diễn ra ngày 23 tháng 04 năm 2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định : + Cho tam giác ABC có A > B. Trên cạnh BC lấy điểm H sao cho HAC = ABC. Đường phân giác của góc BAH cắt BH ở E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. Chứng minh rằng: CF // AE. + Chứng minh rằng: Chữ số tận cùng của hai số tự nhiên n và n5 là như nhau. + Tìm tất cả các số nguyên x thỏa mãn: x2 + x – p = 0; với p là số nguyên tố.
Đề thi HSG Toán 8 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.