Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 đợt 1 năm 2020 - 2021 sở GDĐT Nghệ An

Chiều thứ Bảy ngày 30 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng môn Toán 12 kết hợp thi thử tốt nghiệp Trung học Phổ thông Quốc gia môn Toán năm học 2020 – 2021 đợt thứ nhất. Đề khảo sát chất lượng Toán 12 đợt 1 năm 2020 – 2021 sở GD&ĐT Nghệ An gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 12 đợt 1 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Một loại kẹo có hình dạng là khối cầu với bán kính bằng 1 cm được đặt trong vỏ kẹo có hình dạng là hình chóp tứ giác đều (các mặt của vỏ tiếp xúc với kẹo). Biết rằng khối chóp đều tạo thành từ vỏ kẹo đó có thể tích bé nhất, tính tổng diện tích tất cả các mặt của vỏ kẹo. + Người ta thiết kế 1 cái ly thủy tinh dùng để uống nước có dạng hình trụ như hình vẽ, biết rằng ở mặt ngoài ly có chiều cao là 15 cm và đường kính đáy là 8 cm, độ dày thành ly là 2 mm, độ dày đáy là 1 cm . Hãy tính thể tích lượng thủy tinh cần để làm nên cái ly đó (kết quả gần đúng nhất). + Cho hình nón có chiều cao là 10a. Một mặt phẳng (P) đi qua đỉnh S của hình nón và cắt đường tròn đáy tại hai điểm A, B sao cho tam giác SAB có diện tích bằng 40a^2.√23/3. Biết rằng góc giữa mặt phẳng (P) và mặt đáy của hình nón là 60 độ. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường Thuận Thành 1 - Bắc Ninh
Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra kiến thức thường xuyên, mục tiêu hướng đến kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh : + Một sinh viên muốn mua một cái laptop có giá 12,5 triệu đồng nên mỗi tháng gửi tiết kiệm vào ngân hàng 750.000 đồng theo hình thức lãi suất kép với lãi suất 0,72% một tháng. Hỏi sau ít nhất bao nhiêu tháng sinh viên đó có thể dùng số tiền gửi tiết kiệm để mua được laptop? + Cho khối chóp S.ABC có thể tích V. Điểm M nằm trên cạnh SB. Thiết diện qua M song song với SA và BC chia khối chóp S.ABC thành hai phần. Gọi V1 là thể tích phần khối chóp S.ABC chứa cạnh SA. Biết V1/V = 20/7. Tỉ số SM/SB bằng? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5cm. Tính diện tích xung quay của khối nón (N).
Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Ngày … tháng 01 năm 2021, trường THPT Quế Võ 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai. Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Trong Lễ tổng kết Tháng thanh niên, có 10 đoàn viên xuất sắc gồm 5 nam và 5 nữ được tuyên dương khen thưởng. Các đoàn viên này được sắp xếp ngẫu nhiên thành một hàng ngang trên sân khấu để nhận giấy khen. Tính xác suất để trong hàng ngang trên không có bất kì 2 bạn nữ nào đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Điểm cách đều các đỉnh của hình chóp là: A. trung điểm SD. B. trung điểm SB. C. Điểm nằm trên đường thẳng d // SA và không thuộc SC. D. trung điểm SC. + Cho tam giác ABC có BC = a, CA = b, AB = c. Nếu a, b, c theo thứ tự lập thành một cấp số nhân thì: A. lnsin A.lnsin C = 2lnsin B. B. lnsin A + lnsin C = 2lnsin B. C. ln sin A.ln sin C = (ln sin B)^2. D. lnsin A + lnsin C = ln (2sin B).
Đề thi KSCL Toán 12 lần 1 năm 2020 - 2021 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 12 lần 1 năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 1 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì của hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để của hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Chọn khẳng định sai: A. Mỗi đỉnh của khối đa diện là đỉnh chung của ít nhất 3 mặt. B. Hai mặt bất kì của khối đa diện luôn có ít nhất một điểm chung. C. Mỗi mặt của khối đa diện có ít nhất ba cạnh. D. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt của khối đa diện. + Cho tứ diện ABCD có AB = CD. Mặt phẳng (a) qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là: A. Hình vuông B. Hình thoi C. Hình tam giác D. Hình chữ nhật.
Đề khảo sát chất lượng lần 1 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Đề khảo sát chất lượng lần 1 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 1 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Cho hàm số f(x) liên tục trên R và hàm số f'(x) có bảng biến thiên như sau. Tìm mệnh đề đúng? A. Hàm số y = f(x) có 2 điểm cực tiểu và 1 điểm cực đại. B. Hàm số y = f(x) có 1 điểm cực tiểuvà 1 điểm cực đại. C. Hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất. D. Hàm số y = f(x) có 1 điểm cực tiểu và 2 điểm cực đại. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn x^2 + y^2 – 2x – 4y – 11 = 0. Tìm bán kính của đường tròn (C’) là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = −2020 và phép tịnh tiến theo véctơ v = (2019;2020) là? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5 cm. Tính diện tích xung quay của khối nón (N).