Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6

Nội dung Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6 Bản PDF - Nội dung bài viết Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 đã được tổ chức với nhiều bài toán thú vị. Đề thi gồm 5 bài toán tự luận, và thí sinh được phép làm bài trong khoảng thời gian 120 phút. Nội dung các bài toán trong đề bao gồm các chủ đề đa dạng như tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi đã diễn ra vào ngày 21 tháng 4 năm 2018, và đề thi đã được công bố lời giải chi tiết. Trích dẫn một số bài toán từ đề thi thử vào lớp 10 môn Toán: 1. Một ô tô di chuyển từ điểm A đến B cách nhau 260km. Sau khi đã đi được 120km với vận tốc dự định, xe tăng vận tốc thêm 10km/h trên quãng đường còn lại. Hãy tính vận tốc dự định của ô tô biết rằng xe đến đích B sớm hơn thời gian dự định 20 phút. 2. Cho hệ phương trình x + 2y = 3, x + my = 1 (với m là tham số). Tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất với x và y là số nguyên. 3. Đưa ra parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (với m là tham số). a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.

Nguồn: sytu.vn

Đọc Sách

Đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 - 2023 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 02 trang với 10 câu trắc nghiệm khách quan (chiếm 2.5 điểm) và 04 câu tự luận (chiếm 7.5 điểm), thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết, bảng đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Vũ Hưng và thầy giáo Nguyễn Quang. Trích dẫn đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Trên một cái thang dài 3,5m người ta ghi: “Để đảm bảo an toàn khi sử dụng, phải đặt thang tạo với mặt đất một góc có độ lớn từ 60 đến 70 độ”. Gọi x m x 0 là khoảng cách từ chân thang đến chân tường. Để đảm bảo an toàn khi sử dụng thì điều kiện của x là? + Cho parabol 2 P y x và đường thẳng d y mx 3 2. a) Viết phương trình đường thẳng đi qua hai điểm A và B. Biết hai điểm A và B đều thuộc parabol P có hoành độ lần lượt là [1;2]. b) Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt 1 1 C x y 2 2 D x y sao cho 2 2 2 1 2 1 T y y x x 10 đạt giá trị nhỏ nhất. + Cho đường tròn O và dây BC không đi qua O. Điểm A thuộc cung lớn BC (A khác B C), M là điểm chính giữa cung nhỏ BC. Hai tiếp tuyến của O tại C và M cắt nhau ở N. Gọi K là giao điểm của đường thẳng AB và CM, tia AM cắt tia CN tại P, hai đoạn thẳng AM và BC cắt nhau tại Q. Chứng minh rằng a) Tứ giác ACPK nội tiếp đường tròn b) MN song song với BC. c) 1 1 1 CN KP CQ.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán và chuyên Tin) năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc : + Cho hình thang ABCD (AD song song với BC, AD < BC). Các điểm E, F lần lượt thuộc các cạnh AB, CD. Đường tròn ngoại tiếp tam giác AEF cắt đường thẳng AD tại M (M không trùng với A và D, D nằm giữa A và M), đường tròn ngoại tiếp tam giác CEF cắt đường thẳng BC tại điểm N (N không trùng với B và C, B nằm giữa C và N). Đường thẳng AB cắt đường thẳng CD tại điểm P, đường thẳng EN cắt đường thẳng FM tại điểm Q. Chứng minh rằng: a) Tứ giác EFQP nội tiếp đường tròn. b) PQ song song với BC và tâm đường tròn ngoại tiếp các tam giác PQE, AMF, CEN cùng nằm trên một đường thẳng cố định. c) Các đường thẳng MN, BD, EF đồng quy tại một điểm. + Thầy Quyết viết các số nguyên 1, 2, 3,…., 2021, 2002 lên bảng. Thầy Quyết thực hiện việc thay số như sau: Mỗi lần thay số, thầy chọn ra hai số bất kì trên bảng, xóa hai số này đi và viết lên bảng số trung bình cộng của hai số vừa xóa. Sau 2021 lần thay số như vậy, trên bảng còn lại duy nhất một số. a) Chứng minh rằng số còn lại trên bảng có thể là số 2021. b) Chứng minh rằng số còn lại trên bảng có thể là số 2006. + Tìm tất cả các bộ ba số nguyên dương a b c sao cho a 2 a b c b 2 2 là số chính phương.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Vĩnh Long; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 29 tháng 05 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Vĩnh Long : + Chứng minh rằng tổng các bình phương của 6 số nguyên liên tiếp không thể là số chính phương. + Cho hình vuông ABCD và điểm E trên cạnh BC biết AB = 4cm, 3 4 BE BC. Tia Ax vuông góc với AE tại A cắt tia CD tại F. a) Tính diện tích AEF. b) Gọi I là trung điểm của đoạn thẳng EF, tia AI cắt CD tại K. Chứng minh: 2 AE KF CF. + Cho (O;R) và điểm M sao cho OM = 2R. Kẻ các tiếp tuyến MA, MB với O (A, B là các tiếp điểm). Trên đoạn thẳng AB lấy điểm I (Với AI < BI và I khác A). Qua I vẽ dây CD sao cho IC = ID và C thuộc cung nhỏ AB. Tiếp tuyến của O tại C cắt OI tại Q. Chứng minh: a) Tứ giác OCQD nội tiếp được đường tròn. b) AMB là tam giác đều. c) OQ MQ.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Trà Vinh; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (bản chính thức do sở Giáo dục và Đào tạo tỉnh Trà Vinh công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Trà Vinh : + Trong kỳ thi tuyển sinh vào lớp 10 trung học phổ thông chuyên, tổng số học sinh trúng tuyển của hai trường A và B là 22 em, chiếm tỉ lệ 40% trên tổng số học sinh dự thi của hai trường trên. Nếu tính riêng từng trường thì trường A có 50% học sinh dự thi trúng tuyển và trường B có 28% học sinh dự thi trúng tuyển. Hỏi mỗi trường có bao nhiêu học sinh dự thi? + Đầu năm học, trường A mua 245 quyển sách tham khảo gồm hai môn Toán và Ngữ văn. Cuối năm học, nhà trường đã dùng 1 2 số sách Toán và 2 3 số sách Ngữ văn để khen thưởng cho học sinh giỏi. Biết rằng mỗi học sinh giỏi nhận được một quyển sách Toán và một quyển sách Ngữ văn. Hỏi đầu năm học trường A mua mỗi loại bao nhiêu quyển sách? + Cho hình chữ nhật ABCD, kẻ CM vuông góc với BD (M BD) Gọi I, J lần lượt là trung điểm của MB và AD. Chứng minh IJ và IC vuông góc với nhau.