Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6

Nội dung Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6 Bản PDF - Nội dung bài viết Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 đã được tổ chức với nhiều bài toán thú vị. Đề thi gồm 5 bài toán tự luận, và thí sinh được phép làm bài trong khoảng thời gian 120 phút. Nội dung các bài toán trong đề bao gồm các chủ đề đa dạng như tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi đã diễn ra vào ngày 21 tháng 4 năm 2018, và đề thi đã được công bố lời giải chi tiết. Trích dẫn một số bài toán từ đề thi thử vào lớp 10 môn Toán: 1. Một ô tô di chuyển từ điểm A đến B cách nhau 260km. Sau khi đã đi được 120km với vận tốc dự định, xe tăng vận tốc thêm 10km/h trên quãng đường còn lại. Hãy tính vận tốc dự định của ô tô biết rằng xe đến đích B sớm hơn thời gian dự định 20 phút. 2. Cho hệ phương trình x + 2y = 3, x + my = 1 (với m là tham số). Tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất với x và y là số nguyên. 3. Đưa ra parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (với m là tham số). a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho tất cả các thí sinh) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh : + Hai địa điểm A và B cách nhau 280 km. Hai ô tô cùng xuất phát từ A đến B. Biết vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai 10 km/h và xe thứ nhất đến B sớm hơn xe thứ hai 30 phút. Tính vận tốc mỗi xe? + Cho nửa đường tròn tâm O, đường kính BC. Trên nửa đường tròn (O) lấy điểm A (A khác B và C), gọi H là hình chiếu của A trên BC. Trên cung AC của nửa đường tròn (O) lấy điểm D (D khác A và C), gọi E là hình chiếu của A trên BD, I là giao điểm của hai đường thẳng AH và BD. a) Chứng minh tứ giác ABHE nội tiếp. b) Chứng minh BI.BD = BH.BC. c) Chứng minh hai tam giác AHE và ACD đồng dạng. d) Hai đường thẳng AE và DH cắt nhau tại F. Chứng minh IF // AD. + Một người thợ cơ khí cần cắt vừa đủ một cây sắt dài 100 dm thành các đoạn để hàn lại thành khung một hình lập phương và một hình hộp chữ nhật. Biết hình hộp chữ nhật có chiều dài gấp 6 lần chiều rộng và chiều cao bằng chiều rộng (hình vẽ minh họa). Tìm độ dài của các đoạn sắt sao cho tổng thể tích của hai hình thu được nhỏ nhất?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2023 - 2024 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Yên; đề thi cấu trúc 30% trắc nghiệm (12 câu) kết hợp 70% tự luận (04 câu), thời gian làm bài 120 phút; kỳ thi được diễn ra vào thứ Năm ngày 01 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 THPT môn Toán năm 2023 – 2024 sở GD&ĐT Phú Yên : + Cho hai hàm số y = 1/2×2 và y = ax + b. a) Tìm các hệ số a, b biết đường thẳng y = ax + b đi qua điểm M(-2;-2) và N(4;1). b) Với các giá trị a, b vừa tìm được, hãy: Tìm giao điểm của đường thẳng y = ax + b và đồ thị hàm số y = -1/2×2 bằng phương pháp đại số. Vẽ đồ thị hai hàm số y = -1/2×2 và y = ax + b trên cùng một mặt phẳng tọa độ. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một khu đất hình chữ nhật có tỷ số hai kích thước là 2/3. Người ta làm một sân bóng đá mini 5 người ở giữa, chừa lối đi xung quanh (lối đi thuộc khu đất). Lối đi rộng 2 m và diện tích 224 m2. Tính các kích thước của khu đất. + Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Đường tròn tâm B bán kính BA và đường tròn tâm C bán kính CA cắt nhau tại điểm thứ hai D. a) Chứng minh tứ giác ABDC nội tiếp được. b) Tính độ dài đoạn AD. c) Một đường thẳng d quay quanh A cắt (B) tại E (E khác A) và cắt (C) tại F (F khác A). Gọi M là giao điểm của EB và FC. Khi d thay đổi thì điểm M chạy trên đường nào?
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 sở GD&ĐT Bạc Liêu : + Tìm hệ số a để đồ thị hàm số y = ax2 đi qua điểm M(-1;2). Vẽ đồ thị của hàm số y = ax2 với giá trị a vừa tìm được. + Cho phương trình bậc hai x2 – 2x + m – 2 = 0 (1) với m là tham số. a) Xác định các hệ số a, b, c của phương trình (1). b) Giải phương trình (1) khi m = -1. c) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: 3(x1² + x2²) + x1²x2² = 11. + Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với B tại H (H thuộc đoạn OA, H khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O) (E khác A), N là giao điểm của hai đường thẳng BE và CD. a) Chứng minh tứ giác MEBH nội tiếp dường tròn. b) Chứng minh: NC.ND = NB.NE. c) Khi AC = R, xác định vị trí của điểm M để 2AM + AE đạt giá trị nhỏ nhất.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên Đại học Sư Phạm Hà Nội, thành phố Hà Nội; đề thi dùng riêng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (vòng 2), có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội : + Cho tam giác ABC. Đường tròn (I) nội tiếp tam giác ABC lần lượt tiếp xúc với các cạnh BC, CA, AB tại các điểm D, E, F. Hai đường thẳng MG, NE cắt nhau tại điểm P. Chứng minh rằng: a) EG song song với MN. b) Điểm P thuộc đường tròn (I). + Bảy lục giác đều được sắp xếp và tô màu bằng hai màu trắng, đen như ở Hình 1. Mỗi lần cho phép chọn ra một lục giác đều, đổi màu của lục giác đó và của tất cả các lục giác đều chung cạnh với lục giác đó (trắng thành đen và đen thành trắng). Chứng minh rằng dù có thực hiện cách làm trên bao nhiêu lần đi nữa, cũng không thể nhận được các lục giác đều được ô màu như ở Hình 2. + Chứng minh rằng tồn tại số nguyên dương n > 102023 sao cho tổng tất cả các số nguyên tố nhỏ hơn n là một số nguyên tố cùng nhau với n.