Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề sát hạch lớp 11 môn Toán lần 3 năm 2019 2020 trường THPT Đoàn Thượng Hải Dương

Nội dung Đề sát hạch lớp 11 môn Toán lần 3 năm 2019 2020 trường THPT Đoàn Thượng Hải Dương Bản PDF Đề sát hạch Toán lớp 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán lớp 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho hàm số y = (x + 2)/(2x + 3) có đồ thị là đường cong (C). Đường thẳng có phương trình y = ax + b là tiếp tuyến của (C) cắt trục hoành tại A, cắt trục tung tại B sao cho tam giác OAB là tam giác vuông cân tại O, với O là gốc tọa độ. Khi đó tổng S = a + b bằng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát chất lượng lớp 11 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4
Nội dung Đề thi khảo sát chất lượng lớp 11 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4 Bản PDF Đề thi khảo sát chất lượng Toán lớp 11 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 50 câu trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Trên một bàn bi a có 15 quả bóng được đánh số lần lượt từ 1 đến 15, nếu người chơi đưa được quả bóng nào vào lỗ thì sẽ được số điểm tương ứng với số trên quả bóng đó. Hỏi người chơi có thể đạt được số điểm tối đa là bao nhiêu? + Cho cấp số nhân (un) có số số hạng thứ hai u2 = 6 và số hạng thứ tư là u4 = 54. Công bội của cấp số nhân đó là? + Cho hình chóp S.ABC có SA vuông góc với đáy, tam giác ABC vuông tại B. Chọn khẳng định đúng: A. BC vuông góc với SC B. AC vuông góc với SC C. AB vuông góc với SC D. BC vuông gócvới SB