Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm học 2018 - 2019 trường THPT Dĩ An - Bình Dương

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 nội dung đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Dĩ An – Bình Dương, đề gồm 4 trang với 25 câu trắc nghiệm và 3 câu tự luận, học sinh làm bài thi trong thời gian 90 phút, đề thi có đáp án phần trắc nghiệm và lời giải chi tiết phần tự luận. Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Dĩ An – Bình Dương : + Trong lễ tổng kết năm học 2017 – 2018, lớp 11B (trường THPT Dĩ An, Bình Dương) nhận được 30 cuốn sách gồm 7 sách toán, 11 cuốn sách vật lý, 12 cuốn sách hóa học, các sách cùng môn học là giống nhau. Số sách này được chia đều một cách ngẫu nhiên cho 15 học sinh giỏi của lớp, mỗi học sinh được nhận 2 cuốn sách khác môn học, An và Bình là 2 trong số 15 học sinh giỏi đó. Tính xác suất để 2 cuốn sách mà An nhận được giống 2 cuốn sách mà Bảo nhận được. [ads] + Lớp 11B có 25 đoàn viên trong đó 10 nam và 15 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Tính xác suất để 3 đoàn viên được chọn có 2 nam và nữ. + Cho các mệnh đề: (I) Trong không gian, nếu 2 đường thẳng a và b không có điểm chung thì a//b. (II) Trong không gian, nếu 2 đường thẳng a và b vuông góc nhau thì a cắt b. (III) Trong không gian, nếu 2 đường thẳng a và b cùng song song với đường thẳng thứ ba thì a//b. Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi HKI Toán 11 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - TP HCM
Đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 30 câu trắc nghiệm và 07 câu tự luận, phần trắc nghiệm chiếm 06 điểm, phần tự luận chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn là AB. Gọi M, N lần lượt là trung điểm của SA, SB, điểm P thuộc SC sao cho SP = 2PC. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Tìm giao điểm Q của SD và mặt phẳng (MNP). c) Tìm thiết diện của mặt phẳng (MNP) và hình chóp S.ABCD. d) Gọi I, J, K lần lượt là giao điểm của AD và MQ, MP và AC, NQ và BD. Chứng minh I, J, K thẳng hàng. + Có hai hộp chứa 8 bút xanh và 10 bút đỏ. Chọn ra hai bút. Tính xác suất để: a) Hai bút khác màu. b) Hai bút cùng màu. + Từ tập A = {0, 1, 2, 3, 4, 5} lập được bao nhiêu số tự nhiên thỏa mãn: a) Số gồm 4 chữ số phân biệt. b) Số chẵn gồm 4 chữ số phân biệt.
Đề thi học kỳ 1 Toán 11 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
Đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Thang máy của công ty A được thiết kế để mở cửa như sau: trên bảng điểu khiển có 10 nút được đánh số từ 0 đến 9, để mở cửa cần nhấn liên tiếp ba nút khác nhau sao cho ba số trên ba nút đó theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10. Nhân viên B không biết quy tắc mở cửa nói trên, đã nhấn ngẫu nhiên liên tiếp 3 nút khác nhau trên bảng điều khiển. a. Xây dựng biến cố ngẫu nhiên “Ba số trên ba nút theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10”. b. Tính xác suất để nhân viên B mở cửa thang máy được. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của AD, BC, SA. a) Tìm giao tuyến của (SAN) và (PCD). b) Tìm giao điểm của SB với mặt phẳng (MNP). c) G là trọng tâm tam giác SAB. Chứng minh SC // (GAN). + Khi khai triển (x –1)^n ta được hệ số của x3 là –20. Tìm n.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Văn Cừ - TP HCM
Đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM gồm 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 20 tháng 12 năm 2020, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM : + Cho hình chóp SABCD có ABCD là hình thang (AB đáy lớn). Gọi E, F, M, N lần lượt là trung điểm các cạnh SA, SB, BC, AD. a) Tìm giao tuyến của 2 mặt phẳng (EBC) và (SAD). b) Chứng minh EF // (SMN). + Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của hai đường thẳng AC và BD; E, F lần lượt là trung điểm các cạnh SA và SB. Chứng minh (OEF) // (SCD). + Gieo 1 con súc sắc 2 lần. Tính xác suất mặt 6 chấm xuất hiện ít nhất 1 lần.
Đề thi cuối học kì 1 Toán 11 năm học 2019 - 2020 trường Việt Úc - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường Việt Úc – TP HCM; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường Việt Úc – TP HCM : + Cho hình chóp S.BCDE có đáy là hình thang (với BC là đáy lớn và BC // ED). a/ Tìm giao tuyến của mặt phẳng (SBE) và (SCD); mặt phẳng (SBC) và (SED). b/ Gọi I, J lần lượt là trung điểm của SC và SD. Chứng minh: CD// (IJB). c/ Tìm giao điểm của BJ và mặt phẳng (SCE). d/ Xác định thiết diện của mặt phẳng (BIJ) với hình chóp S.BCDE. + Lớp 11A có 35 học sinh gồm 15 nữ và 20 nam. Cần chọn ngẫu nhiên 6 bạn để tham gia trồng cây tại rừng Cần Giờ. Tính xác suất để trong 6 bạn được chọn: i/ số bạn nam bằng số bạn nữ. ii/ có ít nhất 1 nam và ít nhất 1 nữ. + Từ các số {0; 1; 2; 3; 5; 6; 7; 8} lập được bao nhiêu số chẵn có 4 chữ số đôi một khác nhau.