Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 lần 1 năm 2023 - 2024 trường THPT Ngô Gia Tự - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 lần 1 năm học 2023 – 2024 trường THPT Ngô Gia Tự, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 000 101 102 103 104. Trích dẫn Đề thi HSG Toán 11 lần 1 năm 2023 – 2024 trường THPT Ngô Gia Tự – Vĩnh Phúc : + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a BAD 60 SA SB SC a 2. Gọi M là trung điểm của BC P là điểm trên cạnh SD sao cho SD SP 4. Mặt phẳng (α) đi qua các điểm M P và song song với AC. Tính diện tích thiết diện của hình chóp S ABCD khi cắt bởi mặt phẳng (α). + Cho tứ giác ABCD và S không thuộc mặt phẳng ABCD. Gọi M, N là hai điểm trên BC và SD. Xác định I, J lần lượt là giao điểm của BN và MN với SAC. Từ đó tìm bộ 3 điểm thẳng hàng trong những điểm sau: A. Ba điểm A, I, J thẳng hàng. B. Ba điểm C, I, J thẳng hàng. C. Ba điểm M, I, J thẳng hàng. D. Ba điểm K, I, K thẳng hàng. + Xác định vị trí của M khi 2 cos cos α A. M thuộc góc phần tư thứ I hoặc thứ III. B. M thuộc góc phần tư thứ I. C. M thuộc góc phần tư thứ I hoặc thứ IV. D. M thuộc góc phần tư thứ IV.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic dành cho học sinh môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Cứ vào đầu mỗi tháng, ông A đến gửi tiết kiệm ngân hàng số tiền 10 triệu đồng với lãi suất là 0,5% / tháng theo hình thức lãi kép. Hỏi sau đúng 5 năm thì ông A nhận được số tiền cả gốc và lãi là bao nhiêu, biết rằng trong suốt quá trình gửi, ông A không rút tiền ra và lãi suất của ngân hàng không thay đổi. + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B AB BC a AD a 2. Biết SA vuông góc với đáy ABCD và SA a. 1) Tính sin của góc giữa đường thẳng BD và mặt phẳng SAC 2) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và song song với mặt phẳng SBC cắt các cạnh AB SA SD lần lượt tại N P và Q. Chứng minh tứ giác MNPQ là hình thang vuông. 3) Khi M thay đổi, tìm giá trị lớn nhất của diện tích tứ giác MNPQ. + Cho dãy số un xác định bởi 6 n. Tìm số hạng tổng quát n u và tính giới hạn m 4.
Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Cho bất phương trình log 2 log 3 1 0 x. 1) Giải bất phương trình đã cho khi m 2. 2) Tìm các giá trị của m để bất phương trình đã cho nghiệm đúng với mọi x thuộc khoảng 23. + Gọi S là tập hợp các số tự nhiên có 7 chữ số sao cho trong mỗi số đó chữ số 0 xuất hiện đúng 3 lần. Chọn ngẫu nhiên một số thuộc S, tính xác suất để số đó chia hết cho 5. + Cho hình chóp S.ABC có cạnh 6 a SB các cạnh còn lại của hình chóp bằng a. Gọi I là trung điểm AC. 1) Chứng minh SI vuông góc với đường thẳng BC. 2) Tính cosin của góc giữa hai đường thẳng AB và SC. 3) Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và tam giác SAC. Một mặt phẳng đi qua G và G’ cắt hai cạnh SA SC lần lượt tại M và N. Khi MN đạt giá trị nhỏ nhất, tính diện tích của tam giác GMN.
Đề thi Olympic Toán 11 năm 2023 - 2024 liên cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic dành cho học sinh môn Toán 11 năm học 2023 – 2024 liên cụm trường THPT, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 liên cụm trường THPT – Hà Nội : + Cho phương trình cos2 3sin 4 0 x m với m là tham số thực. a) Giải phương trình khi m 0. b) Tìm tất cả giá trị của m để phương trình đã cho có nghiệm thuộc khoảng 2. + Gọi S là tập hợp các số tự nhiên có 6 chữ số sao cho trong mỗi số đó, các chữ số 123 đều xuất hiện 2 lần. a) Tính số phần tử của tập hợp S. b) Chọn ngẫu nhiên một số thuộc S. Tính xác suất để số đó là số chẵn. c) Chọn ngẫu nhiên một số thuộc S. Tính xác suất để số đó có các chữ số giống nhau không đứng cạnh nhau. + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A B 60 AB a. Đường thẳng SB vuông góc với mặt phẳng ABC và SB a. Gọi O E lần lượt là trung điểm của hai đoạn thẳng BC và AB. a) Gọi là góc giữa hai đường thẳng SA và CE. Tính cos. b) Một mặt phẳng song song với hai đường thẳng OA SB cắt các cạnh AB SA SC BC của hình chóp S ABC lần lượt tại các điểm M N P Q. Chứng minh tứ giác MNPQ là hình thang. c) Tìm giá trị lớn nhất của diện tích tứ giác MNPQ.