Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

300 câu vận dụng cao số phức ôn thi THPT môn Toán

Tài liệu gồm 25 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 300 câu vận dụng cao (VDC) số phức có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 300 câu vận dụng cao số phức ôn thi THPT môn Toán: + Xét các số phức z thỏa mãn điều kiện |z − 1 + i| = 2. Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn các số phức w = z + 2 − i là: A đường tròn tâm I(−3; 2), bán kính R = 2. B đường tròn tâm I(3; −2), bán kính R = 2. C đường tròn tâm I(1; −1), bán kính R = 2. D đường tròn tâm I(1; 0), bán kính R = 2. + Cho số phức z thỏa mãn z + i/z − i là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là: A Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0, 1). B Hình tròn tâm O, bán kính R = 1 (kể cả biên). C Đường tròn tâm O, bán kính R = 1. D Hình tròn tâm O, bán kính R = 1 (không kể biên). + Trong mặt phẳng tọa độ Oxy, cho hình bình hành OABC có tọa độ điểm A(3; 1), C(−1; 2) (như hình vẽ bên). Số phức nào sau đây có điểm biểu diễn là điểm B?

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm cực trị số phức
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề cực trị số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. + Dạng 1: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn z z 0 nhỏ nhất. + Dạng 2: Cho số phức z thỏa mãn zz R 0. Tìm số phức thỏa mãn P zz 1 đạt giá trị lớn nhất, nhỏ nhất. + Dạng 3: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn P zz zz 3 4 đạt giá trị nhỏ nhất. + Dạng 4: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn 2 2 P zz zz 3 4 đạt giá trị nhỏ nhất. + Dạng 5: Cho số phức z thỏa mãn 0 zz R. Tìm số phức thỏa mãn 2 2 P zz zz 1 2 đạt giá trị lớn nhất, nhỏ nhất. + Dạng 6: Cho hai số phức 1 2 z z thỏa mãn 1 0 zz R và z z 21 22 w w trong đó z0 1 2 w w là các số phức đã biết. Tìm giá trị nhỏ nhất của biểu thức 1 2 P z z. + Dạng 7: Cho hai số phức 1 2 z z thỏa mãn 11 1 zw R và z R 21 2 w trong đó w w1 2 là các số phức đã biết. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức Pzz 1 2. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm biểu diễn hình học của số phức
Tài liệu gồm 24 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề biểu diễn hình học của số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Định nghĩa. 2. Phương pháp giải toán. + Bài toán 1: Tìm tập hợp điểm biểu diễn số phức z thỏa mãn f zz g zz hoặc f zz là số thực hoặc f zz là số ảo. + Bài toán 2: Tìm tập hợp điểm biểu diễn số phức w biết 1 2 w zz z và số phức z thỏa mãn z a bi R. 3. Các ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương trình phức
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Căn bậc hai của số phức. 2. Phương trình phức. 3. Tìm căn bậc hai của số phức z a bi a b. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm các phép tính toán với số phức
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các phép tính toán với số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. A. LÝ THUYẾT TRỌNG TÂM 1) Các khái niệm cơ bản. 2) Biểu diễn hình học của số phức. 3) Phép cộng và phép trừ số phức. 4) Số phức liên hợp và môđun của số phức. 5) Phép chia cho số phức khác 0. 6) Một số các kết quả quan trọng. B. PHƯƠNG PHÁP GIẢI TOÁN + Dạng 1: Tính toán cơ bản với số phức. + Dạng 2: Bài toán quy về giải hệ phương trình nghiệm thực. + Dạng 3: Lấy môđun hai vế tìm số phức. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.