Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 năm 2020 - 2021 cụm THPT huyện Yên Dũng - Bắc Giang

Ngày 28 tháng 01 năm 2021, cụm THPT huyện Yên Dũng, tỉnh Bắc Giang tổ chức kỳ thi học sinh giỏi cấp cơ sở môn Toán 10 năm học 2020 – 2021. Đề HSG Toán 10 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang (mã đề 101 và mã đề 102) được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề HSG Toán 10 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá 32 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 400 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm tăng thêm 100 chiếc. Hỏi doanh nghiệp phải định giá bán mới là bao nhiêu triệu đồng để sau khi đã thực hiện giảm giá, lợi nhuận thu được là cao nhất? + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2 m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Hỏi sau bao lâu thì quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm? + Lớp 10C có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hoá, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hoá, 2 học sinh giỏi cả Lý và Hoá, 1 học sinh giỏi cả 3 môn Toán, Lý, Hoá. Hỏi số học sinh giỏi ít nhất một môn (Toán, Lý, Hoá) của lớp 10C là?

Nguồn: toanmath.com

Đọc Sách

Đề HSG cấp trường Toán 10 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2020 – 2021. Đề HSG cấp trường Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Cho hàm số bậc hai với m là tham số. a) Vẽ đồ thị hàm số (1) khi m = 2. b) Tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua với mọi giá trị của m. c) Tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt có hoành độ thỏa mãn. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. a) Tìm tọa điểm D sao cho DA DB DC. b) Viết phương trình đường thẳng đi qua D và tạo với đường thẳng AB góc 45°. c) Tính bán kính đường tròn ngoại tiếp tam giác ABC. +  Cho ba số thực thỏa mãn x + y + z = 4. Tìm giá trị lớn nhất của biểu thức.
Đề Olympic 27 tháng 4 Toán 10 năm 2020 - 2021 sở GDĐT Bà Rịa - Vũng Tàu
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 10 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán 10 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề chọn HSG Toán 10 vòng 1 năm 2020 - 2021 trường THPT Trần Nguyên Hãn - Hải Phòng
Đề chọn HSG Toán 10 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán 10 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Tìm tất cả các giá trị của tham số m để hàm số y = (2m – 1)x2 – 2mx + m + 2 đồng biến trên khoảng (1;+vc). + Cho số thực a < 0 và hai tập hợp A = (-vc;4a); B = [16/a;+vc). Tìm tất cả các giá trị của a để A giao B bằng tập hợp rỗng. + Tìm tất cả các giá trị của tham số m để phương trình (x – m)/(x – 1) + (x – 2)/(x + 1) = 2 vô nghiệm.
Đề chọn đội tuyển Olympic 2021 Toán 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm - Quảng Nam
Ngày 19 tháng 09 năm 2020, trường THPT chuyên Nguyễn Bỉnh Khiêm, thành phố Tam Kỳ, tỉnh Quảng Nam tổ chức kỳ thi chọn đội dự tuyển Olympic năm 2021 môn Toán lớp 10 lần thi thứ nhất. Đề chọn đội tuyển Olympic 2021 Toán 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm – Quảng Nam gồm có 08 bài toán, học sinh làm bài trong 150 phút. Trích dẫn đề chọn đội tuyển Olympic 2021 Toán 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm – Quảng Nam : + Cho tam giác ABC có M là trung điểm của BC. Trên các cạnh AB và AC lần lượt lấy các điểm E và F sao cho AE = AF. Đường trung tuyến AM và đường thẳng EF cắt nhau tại Q. Chứng minh rằng: QE/QF = AC/AB. + Trên bảng cho 2020 số tự nhiên liên tiếp từ 1 đến 2020. Ta thực hiện liên tiếp phép biến đổi sau: mỗi lần biến đổi ta xóa đi hai số bất kì a, b có trên bảng rồi viết thêm số a + b – 1/3ab vào bảng. Khi trên bảng chỉ còn lại đúng một số thì dừng lại. Tìm số còn lại đó. + Cho a, b, c là độ dài ba cạnh của một tam giác, có góc lớn nhất bằng α. Biết rằng a và b là hai nghiệm của phương trình x^2 + 4(c + 2) = (c + 4)x. Tính α.