Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa

Nội dung Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Chào đón quý thầy cô và các em học sinh lớp 9, đây là bộ đề thi Olympic dành cho các trường THCS nhằm chuẩn bị cho kỳ thi học sinh giỏi môn Toán lớp 9 năm học 2023-2024 tại trường THPT chuyên Lam Sơn, Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 05 tháng 11 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trong đề thi này, chúng ta sẽ gặp các bài toán đa dạng và thú vị như: Phương trình nghiệm nguyên ax by c với điều kiện số nguyên dương A. Cách chứng minh số nghiệm nguyên thỏa mãn điều kiện đã cho. Chứng minh đồng dạng của các tam giác trong hình học cơ bản thông qua giao điểm ba đường phân giác của tam giác. Chứng minh tính chất về đường tròn nội tiếp tam giác và đường thẳng đi qua tâm của đường tròn. Hy vọng rằng bộ đề thi này sẽ giúp các em ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt được kết quả cao trong kỳ thi sắp tới. Chúc các em học tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.