Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán về đường tròn

Tài liệu gồm 42 trang, phân loại và hướng dẫn giải các dạng toán về đường tròn, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 (tập 1) phần Hình học chương 2. VẤN ĐỀ 1. SỰ XÁC ĐỊNH ĐƯỜNG TRÒN. TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN (PHẦN 1). A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Chứng minh các điểm cho trước cùng nằm trên một đường tròn. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 2. SỰ XÁC ĐỊNH ĐƯỜNG TRÒN. TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN (PHẦN 2). A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 2. Xác định vị trí tương đối của một điểm đối với một đường tròn. + Dạng 3. Tính bán kính của đường tròn ngoại tiếp tam giác và số đo của các góc liên quan. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 3. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Tính độ dài đoạn thẳng. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 4. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 2. Chứng minh hai đoạn thẳng bằng nhau. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 5. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Cho biết d, R, xác định vị trí tương đối của đường thẳng và đường tròn hoặc ngược lại. + Dạng 2. Xác định vị trí tâm đường tròn có bán kính cho trước và tiếp xúc với một đường thẳng cho trước. + Dạng 3. Bài liên quan đến tính độ dài. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 6. DẤU HIỆU NHẬN BIẾT TIẾP TUYẾN CỦA ĐƯỜNG TRÒN (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 7. DẤU HIỆU NHẬN BIẾT TIẾP TUYẾN CỦA ĐƯỜNG TRÒN (PHẦN 2). A. TÓM TẮT KIẾN THỨC. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 2. Tính độ dài. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 8. TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 9. TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 2. Chứng minh tiếp tuyến, tính độ dài, tính số đo góc. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 10. LUYỆN TẬP TÍNH CHẤT HAI TIẾP TUYẾN CẮT NHAU. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP TẠI LỚP. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 11. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Các bài toán có cho hai đường tròn tiếp xúc nhau. + Dạng 2. Các bài toán cho hai đường tròn cắt nhau. C. BÀI TẬP VỀ NHÀ. ÔN TẬP CHỦ ĐỀ 4 (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP TỰ LUYỆN. ÔN TẬP CHỦ ĐỀ 4 (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP TỰ LUYỆN. HƯỚNG DẪN GIẢI. VẤN ĐỀ 1. VẤN ĐỀ 2. VẤN ĐỀ 3. VẤN ĐỀ 4. VẤN ĐỀ 5. VẤN ĐỀ 6. VẤN ĐỀ 7. VẮN ĐỀ 8. VẤN ĐỀ 9. VẤN ĐỀ 10. VẤN ĐỀ 11. ÔN TẬP CHỦ ĐỀ 4 (PHẦN 1). ÔN TẬP CHỦ ĐỀ 4 (PHẦN 2).

Nguồn: toanmath.com

Đọc Sách

Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn
Nội dung Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn Bản PDF - Nội dung bài viết Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Tài liệu này bao gồm 18 trang, cung cấp hướng dẫn cụ thể về cách chứng minh tứ giác nội tiếp và cách chứng minh các điểm cùng thuộc một đường tròn. Đây là một dạng bài toán thường gặp trong chương trình Hình học 9 và trong các bài toán khó hơn. Việc này giúp học sinh hiểu rõ hơn về tính chất và cách xác định tứ giác nội tiếp, cũng như cách chứng minh các điểm cùng thuộc một đường tròn. Hướng dẫn trong tài liệu được trình bày một cách dễ hiểu và chi tiết, giúp người đọc nắm bắt được bản chất của vấn đề và áp dụng vào thực hành một cách linh hoạt.
Chuyên đề góc với đường tròn
Nội dung Chuyên đề góc với đường tròn Bản PDF - Nội dung bài viết Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn là một phần quan trọng của chương trình Hình học lớp 9. Tài liệu này gồm 30 trang, cung cấp hướng dẫn chi tiết về cách giải các dạng toán liên quan đến góc trong đường tròn. Chúng ta sẽ tìm hiểu về các loại góc như góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung. Trước tiên, để tính số đo của góc ở tâm, chúng ta cần biết rằng số đo của cung bị chắn bởi góc ở tâm chính là số đo của góc đó. Ngoài ra, chúng ta có thể sử dụng các kiến thức về tỉ lệ lượng giác, quan hệ đường kính và dây cung để giải các bài tập về góc ở tâm. Chủ đề tiếp theo là về góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung. Điểm chung chính là hai góc nội tiếp chắn bởi cùng một cung sẽ bằng nhau. Chúng ta cũng cần quan tâm đến các quy tắc về góc vuông, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. Chủ đề cuối cùng nói về góc có đỉnh bên trong và bên ngoài đường tròn. Khi gặp các bài toán liên quan đến góc này, chúng ta có thể tính số đo của chúng dựa vào số đo của các cung bị chắn. Quan trọng nhất là nhớ rằng số đo của góc nội tiếp bằng nửa số đo của góc ở tâm cùng chắn một cung. Cuối cùng, tài liệu còn cung cấp một số bài tập thực hành về góc với đường tròn, từ các dạng cơ bản đến phức tạp. Qua việc giải các bài tập này, học sinh sẽ củng cố kiến thức và kỹ năng giải toán, từ đó nắm vững chương trình Hình học lớp 9 chương 3. Đây thực sự là một tài liệu hữu ích giúp học sinh hiểu rõ hơn về chuyên đề góc với đường tròn và áp dụng kiến thức vào việc giải các bài tập thực tế.
Chuyên đề hệ thức lượng trong tam giác vuông
Nội dung Chuyên đề hệ thức lượng trong tam giác vuông Bản PDF - Nội dung bài viết Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề này bao gồm 26 trang tài liệu, hướng dẫn cách sử dụng các hệ thức lượng trong tam giác vuông để giải các dạng bài tập liên quan trong chương trình Hình học lớp 9 chương 1. Vấn đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông Phần này bao gồm lý thuyết và bài tập về cách tính cạnh và đường cao trong tam giác vuông. Vấn đề 2: Tỉ số lượng giác của góc nhọn Phần này giải thích về công thức tỉ số lượng giác của góc nhọn, bao gồm định nghĩa, định lí, hệ thức cơ bản và so sánh các tỉ số lượng giác. Vấn đề 3: Một số hệ thức về cạnh và góc trong tam giác vuông Phần này trình bày định lí và cách giải tam giác vuông dựa trên các hệ thức về cạnh và góc trong tam giác. Vấn đề 4: Giải bài toán hệ thức lượng bằng phương pháp đại số Phần này hướng dẫn cách giải các bài toán hệ thức lượng trong tam giác vuông bằng phương pháp đại số. Vấn đề 5: Bài tập về hệ thức lượng trong tam giác vuông Phần này cung cấp các bài tập thực hành về hệ thức lượng trong tam giác vuông để học sinh rèn luyện kỹ năng giải bài tập.
Chuyên đề hệ phương trình bậc nhất hai ẩn
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Chuyên đề hệ phương trình bậc nhất hai ẩn Chuyên đề hệ phương trình bậc nhất hai ẩn Tài liệu này bao gồm 77 trang, hướng dẫn cách giải các dạng toán liên quan đến hệ phương trình bậc nhất hai ẩn, giúp học sinh hiểu rõ chương trình Đại số lớp 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. Kiến thức trọng tâm Bộ tài liệu này chủ yếu tập trung vào việc giải các dạng toán đặc biệt về hệ phương trình bậc nhất hai ẩn và cách tiếp cận vấn đề. B. Các dạng toán và phương pháp giải I. Phương pháp thế Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp thế. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp thế và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Xác định điều kiện để hệ phương trình có nghiệm thỏa mãn điều kiện đã cho. II. Phương pháp cộng đại số Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp cộng đại số và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. Sử dụng phương pháp đặt ẩn phụ Chương này tập trung vào việc sử dụng phương pháp đặt ẩn phụ để giải các bài toán liên quan đến hệ phương trình bậc nhất hai ẩn. C. Bài tập trắc nghiệm hệ phương trình bậc nhất hai ẩn Bộ tài liệu này cũng cung cấp các bài tập trắc nghiệm để học sinh ôn tập và kiểm tra kiến thức của mình về chủ đề này. D. Đáp án và hướng dẫn giải Để giúp học sinh tự kiểm tra và tự học thêm, tài liệu kèm theo đáp án và hướng dẫn chi tiết cách giải các bài tập.