Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh

Nội dung Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Chào đón quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Các bài toán trong đề thi đều được chọn lọc kỹ lưỡng để đảm bảo tính chất chuyên sâu và đòi hỏi của môn Toán chuyên. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long - Quảng Ninh: 1. Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. 2. Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. 3. Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương. Hy vọng đề thi này sẽ giúp các em học sinh thử sức và phát huy tốt năng lực Toán học của mình. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Cho phương trình 2 x m x m 2 3 0 (x là ẩn số và m là tham số). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x x sao cho biểu thức 2 1 2 1 2 A x x x x 2 3 đạt giá trị lớn nhất. + Cho đường tròn O đường kính AB. Gọi H là điểm thuộc đoạn thẳng AO H A H O. Qua H vẽ đường thẳng vuông góc với AB đường thẳng này cắt đường tròn O tại C và D. Hai đường thẳng BC và AD cắt nhau tại M. Gọi N là hình chiếu của M trên đường thẳng AB. a) Chứng minh ACN AMN. b) Chứng minh 2 CH NH OH. c) Tiếp tuyến tại A của đường tròn (O) cắt NC tại E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. + Cho hình vuông ABCD nội tiếp đường tròn O R trên dây cung DC lấy điểm E sao cho DC DE 3 đường thẳng AE cắt cung nhỏ DC tại M. Gọi I là giao điểm của BM và DC, vẽ OH vuông góc với DM tại H. Tính độ dài các đoạn thẳng AE và DI theo R.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho A là một tập con của tập số tự nhiên. Tập A có phần tử nhỏ nhất là 1 phần tử lớn nhất là 100 và mỗi phần tử x thuộc A x 1 luôn biểu diễn được dưới dạng x a b trong đó a b thuộc A a (có thể bằng b). Hãy tìm một tập A có số phần tử nhỏ nhất. Giải thích cách tìm? + Cho tam giác ABC AB AC có ba góc nhọn nội tiếp đường tròn O và có trực tâm H. Gọi D E F lần lượt là chân đường cao kẻ từ A B C của tam giác ABC. Gọi I là trung điểm cạnh BC P là giao điểm của hai đường thẳng EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là K. a) Chứng minh PB PC PE PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là Q. Chứng minh tứ giác BIQF nội tiếp. + Cho ba điểm A B C phân biệt theo thứ tự cùng nằm trên một đường thẳng. Qua điểm B kẻ đường thẳng d vuông góc với đường thẳng AC D là một điềm di động trên đường thẳng d D B. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng d tại điểm E khác D. Gọi P Q lần lượt là hình chiếu vuông góc của điểm B trên các đường thẳng AD và AE. Gọi R là giao điểm của hai đường thẳng BQ và CD S là giao điểm của hai đường thẳng BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di động trên đường thẳng d.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Tìm tất cả các số nguyên tố p và q thỏa mãn 2 2 p 2 1 q. + Ba cầu thủ của một đội bóng trò chuyện với nhau về số áo được in trên áo mỗi người, nội dung như sau: An: Tôi nhận ra rằng các số trên áo của chúng ta đều là số nguyên tố có hai chữ số. Bình: Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi đã trôi qua vào tháng này. Chung: Thật thú vị! Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi sắp tới vào tháng này. An: Và tổng hai số trên áo hai bạn là ngày hôm nay. Hãy xác định số áo của An, Bình và Chung. + Cho biểu thức 2 f x ax bx c (với abc a 0). Đặt 2 ∆ b ac 4. Chứng minh rằng nếu ∆ ≤ 0 thì f x 0 với mọi số thực x.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Tin) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho đường tròn O và điểm I nằm ngoài đường tròn đó. Từ điểm I kẻ hai tiếp tuyến IA IB với đường tròn O (A B là các tiếp điểm). a) Chứng minh tứ giác OAIB nội tiếp đường tròn. b) Qua A kẻ đường thẳng song song với IB cắt đường tròn O tại điểm thứ hai là C (C khác A). Đường thẳng IC cắt đường tròn O tại điểm thứ hai là E (E khác C). Đường thẳng AE cắt IB tại K. Chứng minh 2 KB AK KE. c) Đường thẳng IC cắt AB tại D. Chứng minh IE DE  IC DC. + Cho parabol 2 P y x và đường thẳng d y x m 2 (m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt sao cho một trong hai giao điểm đó có hoành độ bằng 1. + Cho phương trình 2 x x m 6 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt 1 2 x x thoả mãn 2 2 1 1 2 2 2 2 38 x x x x.